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Motivation

� Finite lattice analysis is the basis of lots of 

compiler optimizations

� Programs with parallel components need 

optimization too

� Few analyses available for such parallel 

structures



Existing techniques / research

� McDowell ’89: Developed heuristics to 

ignore some interleavings

� Grunwald and Srinivasan ’93: Mandate 

that interleaved components have no data 

dependencies (any interleavings are ok)

� Long and Clarke ’91: Analyzed Ada

programs with parallel tasks, but no 

shared variables



Goals of the paper

� Provide analysis for programs with 

sections of parallel or interleaved 

execution

� Optimally cover “interference”

� Efficiency on par with sequential 

algorithms

� Be easy to implement



Bitvector algorithms

� Use bitvectors as the only analysis 

mechanism

� Lattice with only elements {tt, ff}

� Still powerful! Bitvectors can characterize 

liveness, “very busy”-ness, reaching 

definitions, def-use, availability, code 

motion, cse, dce, strength reduction, etc



How they meet their goals (1)

(1) Optimally cover “interference”

� Claim: PMOP (Parallel Meet Over Paths) = 
PMFPbv (Parallel Maximal Fixed Point for 
bitvectors)

� The key observation: “Though the various 
executions of parallel components are 
semantically different, they need not be 
considered during bitvector analysis.”



How they meet their goals (2)

(2) Be as efficient as 

sequential counterparts

� These are standard bitvector algorithms; 

no special techniques or global state 

space are actually used. Therefore, the 

efficiency is the same as sequential 

techniques.



How they meet their goals (3)

(3) Be easy to implement

� The ease of implementation comes from 

the fact that the bitvector analysis is the 

same as on any sequential program, after 

a single fixed-point “preprocessing” step.



Sequential flow graphs

� Sequential flow graphs: G = (N, E, s, e)

N – set of nodes (statements)

E – set of directed edges (n, m) ∈ E implies 
nondeterministic flow from node n to m.

s, e are the “start” and “end” nodes (always 
a “skip”)

All nodes n ∈ N are on at least one path 
from s to e.



Parallel flow graphs

� Parallel flow graph G* = (N*, E*, s*, e*)

Identical to normal flow graphs, except for 
treatment of par{s1}{s2} structure:

par structure begins with ParBegin node, and 
ends with ParEnd (both ‘skip’ nodes).

ParBegin has edges to the two separate flow 
graphs for each of the two sides of the parallel 
structure. These separate subgraphs then each 
flow toward the same ParEnd structure.



par structures

par{s1}{s2} denotes two sets of 

statements to execute simultaneously, 

with any interleaving between the 
elements of s1 and s2 acceptable

- No synchronization inside a par structure

- No jumps into or out of a par structure

- Both sides must reach ParEnd for program 
flow to continue past the par structure 
(implicit synchronization)



A parallel flow

graph example

Statements...

Start (skip)

If(x == 0)

Then... Else...

Statements...

ParBegin

(skip)

Parallel path 1 Parallel path 2

ParEnd

(skip)

End (skip)

A flow graph of statements 
(basic blocks); Parallel blocks 
are denoted with the || 
symbol between them, and 
share common ParBegin and 
ParEnd elements.



Definitions

predG*(n) =df all nodes { m | (m, n) ∈ E*}

succG*(n) =df all nodes { m | (n ,m) ∈ E*}

GP(G*) = all subgraphs of G* representing 
par statements

GC(G’) for G’ ∈ GP(G*)  are all component 
graphs of a particular subgraph

GC(G*) is shorthand for the set of all such 
component graphs (single-entry/exit 
regions of G*)



Definitions, continued

� rank(G) =df The nesting level of a particular 
par statement, with 0 as inner-most, then 
1, 2, etc.

� pfg(n): maps a node n to the smallest 
enclosing flow graph in GP(G*), or to G* if 
no such flow graph exists.

� cfg(n): maps a node n to the smallest 
enclosing flow graph in GC(G*), or to G* if 
no such flow graph exists.



Interleaving predecessors

� For a sequential flow graph, predG(n) gives 

the predecessors of a node n

� For possibly interleaved program 

segments, ItlvgPredG*(n) gives all possible 

predecessor nodes; essentially, predG*(n) 

U { all nodes in all complementary 
subgraphs of the par statement }



Interleaving predecessors example

Statement ‘n’

ParEnd

(skip)

ParBegin

(skip)

(interleaving 

predecessors of n)

All nodes in the 
component subgraph
complementary to cfg(n) 
are interleaving 
predecessors of n, as 
well as all static 
predecessors of n.



Data flow analysis

� Use Kam/Ullman definitions for data flow 

analyses:

� [[n]] : N* � (C � C), where C is a lattice

� Bitvectors: [[n]] : N* � (B � B), where B is 

the lattice ({ff, tt}, �, �}



Bitvectors

� Meet operator is AND (OR in reverse 

lattice {tt, ff})

� ff � tt

� FB: monotonic functions (B � B)

�Elements are {Consttt, Constff, IdB}

�FB itself is a complete lattice

�All functions of FB are distributive



Restrictions on bitvectors

� Functions on Bk � B are not distributive 

for k > 2

� OK because assignment motion, partial 

dce, liveness, availability, etc can all be 

computed with only functions in FB.



Naïve solution to bitvector analysis

� Any given set of two parallel subgraphs can be 

decomposed into a single sequential subgraph

by using if statements to cover all possible 

interleaving program flows…

� But this solution introduces exponential number 

of statements; effectively incomputable.



Solution: Main Lemma

Given a sequence of q transformations on the lattice, there exists 
some transformation fk that has the “final” and therefore only effect 
on the lattice, and al subsequent “transformations” are IdB.

Furthermore: for m ∈ ItlvgPredG*(n), � a parallel path to leading to 
n with m as the last step before n.

Significance: Only one statement among the interleaving 
predecessors of a given statement can actually affect the value of 
the lattice property as seen by that statement!



Interference

� Only possible interference between 
parallel flow graphs is destruction. 

� NonDestructible(n): no interleaving 
predecessors of n are Constff.

� The MFP solution essentially resolves to: 
is a particular property NonDestructable
over a par flow graph?



The Algorithm:



The PMFPbv solution

where NX
* is the set of all ParEnd statements in the graph G*



The parallel bitvector coincidence 

theorem

� The parallel bitvector coincidence theorem 
shows that PMOP = PMFPbv for B.

� Within a side of a parallel structure, we simply 
use predG*(n) to calculate the value of the lattice 
at that point.

� But we also consider the other parallel 
component by taking the Meet of that value with 
the function ConstNonDestructible(n). This captures 
the value computed across all interleaving 
predecessors – handling all possible 
interleavings at once.



PMOP = PMFPbv

Because the functions are distributive, and by 

the parallel coincidence theorem, the maximal 

fixed point solution is equivalent to the meet over 

paths solution.



Performance, implementation & 

results

� While they have a section for “implementation”, 

they don’t actually mention many specifics about 

implementing this algorithm.

� The paper computes code motion for cse, and 

partial dead code elimination for an example 

routine.

� Timing, memory usage? “The parallel version 

often runs faster than the sequential version.”



Discussion Topics / Questions

� Did the authors meet their stated goals?

� Could it run “fast enough”?

� What does this paper give us over the previous 
work cited?

� Possible extensions? Application to real 
languages? Are par blocks a reasonable 
abstraction?

� Can par blocks be extended to handle other 
control flow mechanisms?




