
Efficient and Optimal

Bitvector Analyses for

Parallel Programs

Jens Knoop, Bernhard

Steffen, and Jürgen Vollmer

Presented by Aaron Kimball, October 20, 2005, COM S 711

Parallelism for Free:

Motivation

� Finite lattice analysis is the basis of lots of

compiler optimizations

� Programs with parallel components need

optimization too

� Few analyses available for such parallel

structures

Existing techniques / research

� McDowell ’89: Developed heuristics to

ignore some interleavings

� Grunwald and Srinivasan ’93: Mandate

that interleaved components have no data

dependencies (any interleavings are ok)

� Long and Clarke ’91: Analyzed Ada

programs with parallel tasks, but no

shared variables

Goals of the paper

� Provide analysis for programs with

sections of parallel or interleaved

execution

� Optimally cover “interference”

� Efficiency on par with sequential

algorithms

� Be easy to implement

Bitvector algorithms

� Use bitvectors as the only analysis

mechanism

� Lattice with only elements {tt, ff}

� Still powerful! Bitvectors can characterize

liveness, “very busy”-ness, reaching

definitions, def-use, availability, code

motion, cse, dce, strength reduction, etc

How they meet their goals (1)

(1) Optimally cover “interference”

� Claim: PMOP (Parallel Meet Over Paths) =
PMFPbv (Parallel Maximal Fixed Point for
bitvectors)

� The key observation: “Though the various
executions of parallel components are
semantically different, they need not be
considered during bitvector analysis.”

How they meet their goals (2)

(2) Be as efficient as

sequential counterparts

� These are standard bitvector algorithms;

no special techniques or global state

space are actually used. Therefore, the

efficiency is the same as sequential

techniques.

How they meet their goals (3)

(3) Be easy to implement

� The ease of implementation comes from

the fact that the bitvector analysis is the

same as on any sequential program, after

a single fixed-point “preprocessing” step.

Sequential flow graphs

� Sequential flow graphs: G = (N, E, s, e)

N – set of nodes (statements)

E – set of directed edges (n, m) ∈ E implies
nondeterministic flow from node n to m.

s, e are the “start” and “end” nodes (always
a “skip”)

All nodes n ∈ N are on at least one path
from s to e.

Parallel flow graphs

� Parallel flow graph G* = (N*, E*, s*, e*)

Identical to normal flow graphs, except for
treatment of par{s1}{s2} structure:

par structure begins with ParBegin node, and
ends with ParEnd (both ‘skip’ nodes).

ParBegin has edges to the two separate flow
graphs for each of the two sides of the parallel
structure. These separate subgraphs then each
flow toward the same ParEnd structure.

par structures

par{s1}{s2} denotes two sets of

statements to execute simultaneously,

with any interleaving between the
elements of s1 and s2 acceptable

- No synchronization inside a par structure

- No jumps into or out of a par structure

- Both sides must reach ParEnd for program
flow to continue past the par structure
(implicit synchronization)

A parallel flow

graph example

Statements...

Start (skip)

If(x == 0)

Then... Else...

Statements...

ParBegin

(skip)

Parallel path 1 Parallel path 2

ParEnd

(skip)

End (skip)

A flow graph of statements
(basic blocks); Parallel blocks
are denoted with the ||
symbol between them, and
share common ParBegin and
ParEnd elements.

Definitions

predG*(n) =df all nodes { m | (m, n) ∈ E*}

succG*(n) =df all nodes { m | (n ,m) ∈ E*}

GP(G*) = all subgraphs of G* representing
par statements

GC(G’) for G’ ∈ GP(G*) are all component
graphs of a particular subgraph

GC(G*) is shorthand for the set of all such
component graphs (single-entry/exit
regions of G*)

Definitions, continued

� rank(G) =df The nesting level of a particular
par statement, with 0 as inner-most, then
1, 2, etc.

� pfg(n): maps a node n to the smallest
enclosing flow graph in GP(G*), or to G* if
no such flow graph exists.

� cfg(n): maps a node n to the smallest
enclosing flow graph in GC(G*), or to G* if
no such flow graph exists.

Interleaving predecessors

� For a sequential flow graph, predG(n) gives

the predecessors of a node n

� For possibly interleaved program

segments, ItlvgPredG*(n) gives all possible

predecessor nodes; essentially, predG*(n)

U { all nodes in all complementary
subgraphs of the par statement }

Interleaving predecessors example

Statement ‘n’

ParEnd

(skip)

ParBegin

(skip)

(interleaving

predecessors of n)

All nodes in the
component subgraph
complementary to cfg(n)
are interleaving
predecessors of n, as
well as all static
predecessors of n.

Data flow analysis

� Use Kam/Ullman definitions for data flow

analyses:

� [[n]] : N* � (C � C), where C is a lattice

� Bitvectors: [[n]] : N* � (B � B), where B is

the lattice ({ff, tt}, �, �}

Bitvectors

� Meet operator is AND (OR in reverse

lattice {tt, ff})

� ff � tt

� FB: monotonic functions (B � B)

�Elements are {Consttt, Constff, IdB}

�FB itself is a complete lattice

�All functions of FB are distributive

Restrictions on bitvectors

� Functions on Bk � B are not distributive

for k > 2

� OK because assignment motion, partial

dce, liveness, availability, etc can all be

computed with only functions in FB.

Naïve solution to bitvector analysis

� Any given set of two parallel subgraphs can be

decomposed into a single sequential subgraph

by using if statements to cover all possible

interleaving program flows…

� But this solution introduces exponential number

of statements; effectively incomputable.

Solution: Main Lemma

Given a sequence of q transformations on the lattice, there exists
some transformation fk that has the “final” and therefore only effect
on the lattice, and al subsequent “transformations” are IdB.

Furthermore: for m ∈ ItlvgPredG*(n), � a parallel path to leading to
n with m as the last step before n.

Significance: Only one statement among the interleaving
predecessors of a given statement can actually affect the value of
the lattice property as seen by that statement!

Interference

� Only possible interference between
parallel flow graphs is destruction.

� NonDestructible(n): no interleaving
predecessors of n are Constff.

� The MFP solution essentially resolves to:
is a particular property NonDestructable
over a par flow graph?

The Algorithm:

The PMFPbv solution

where NX
* is the set of all ParEnd statements in the graph G*

The parallel bitvector coincidence

theorem

� The parallel bitvector coincidence theorem
shows that PMOP = PMFPbv for B.

� Within a side of a parallel structure, we simply
use predG*(n) to calculate the value of the lattice
at that point.

� But we also consider the other parallel
component by taking the Meet of that value with
the function ConstNonDestructible(n). This captures
the value computed across all interleaving
predecessors – handling all possible
interleavings at once.

PMOP = PMFPbv

Because the functions are distributive, and by

the parallel coincidence theorem, the maximal

fixed point solution is equivalent to the meet over

paths solution.

Performance, implementation &

results

� While they have a section for “implementation”,

they don’t actually mention many specifics about

implementing this algorithm.

� The paper computes code motion for cse, and

partial dead code elimination for an example

routine.

� Timing, memory usage? “The parallel version

often runs faster than the sequential version.”

Discussion Topics / Questions

� Did the authors meet their stated goals?

� Could it run “fast enough”?

� What does this paper give us over the previous
work cited?

� Possible extensions? Application to real
languages? Are par blocks a reasonable
abstraction?

� Can par blocks be extended to handle other
control flow mechanisms?

