
Solving Shape-Analysis Problems in Languages with Destructive UpdatingMooly Sagiv�y and Thomas RepsyUniversity of Wisconsin Reinhard WilhelmzUniversit�at des SaarlandesAbstractThis paper concerns the static analysis of programs that per-form destructive updating on heap-allocated storage. Wegive an algorithm that conservatively solves this problemby using a �nite shape-graph to approximate the possible\shapes" that heap-allocated structures in a program cantake on. In contrast with previous work, our method is evenaccurate for certain programs that update cyclic data struc-tures. For example, our method can determine that whenthe input to a program that searches a list and splices ina new element is a possibly circular list, the output is apossibly circular list.1 IntroductionThis paper concerns the static analysis of programs thatperform destructive updating on heap-allocated storage. Itaddresses problems that can be looked at | depending onone's point of view | as pointer-analysis problems, alias-analysis problems, storage-analysis (shape-analysis) prob-lems, or type-checking problems. The information obtainedis useful, for instance, for generating e�cient sequential orparallel code.Throughout most of the paper, we will emphasize the ap-plication of our approach to shape-analysis problems. Thegoal of shape analysis is to give, for each program point,a (�nite) characterization of the possible \shapes" that theprogram's heap-allocated data structures can have at thatpoint. We will illustrate our approach by means of a runningexample in which we apply our analysis technique to a pro-gram that uses destructive updating operations to reversea list. This example also illustrates the connection betweenshape analysis and type checking: It demonstrates how asu�ciently precise shape-analysis algorithm is able to ver-ify that the destructive-reverse program does indeed returna list whenever its argument is a list. The application of�On leave from the IBM Israel Scienti�c Center. Part of this re-search was done while visiting the Universit�at des Saarlandes, par-tially supported by SFB 124-VLSI-Design Methods and Parallelismof the Deutsche Forschungsgemeinschaft.ySupported by a David and Lucile Packard Fellowship for Sci-ence and Engineering, by the National Science Foundation undergrant CCR-9100424, and by the Defense Advanced Research ProjectsAgency under ARPA Order No. 8856 (monitored by the O�ce ofNaval Research under contract N00014-92-J-1937). Address: Com-puter Science Department; 1210 West Dayton Street; Madison, WI53706; USA. Email: fsagiv,repsg@cs.wisc.edu.zAddress: Fachbereich 14 Informatik; 66123 Saarbr�ucken; Ger-many. Email: wilhelm@cs.uni-sb.de.To appear in the 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages, St. Petersburg Beach, Florida, USA, onJanuary 21-24, 1996.

our work to pointer-analysis and alias-analysis problems isdiscussed in Section 5.2.This paper develops a new shape-analysis algorithm thatprovides conservative information about the possible \shapes"that heap-allocated structures in a program can take on.For certain programs | including ones in which a signi�-cant amount of destructive updating takes place | our al-gorithm is able to verify shape-preservation properties. Ex-amples of such properties include: (i) when the input to theprogram is a list, the output is (still) a list; (ii) when theinput to the program is a tree, the output is (still) a tree;and (iii) when the input to the program is a circular list,the output is a circular list. For instance, our method candetermine that \list-ness" is preserved by (i) a list-reversalprogram that performs the reversal by destructively updat-ing the input list, and (ii) a list-insert program that searchesa list and splices a new element into the list. Furthermore,our method can determine that the list-insert program alsopreserves \circular list-ness".These are rather surprising capabilities. None of the pre-viously developed methods that use graphs to solve shape-analysis problems are capable of determining that \list-ness"is preserved on these examples (or examples of similar com-plexity) [JM81, JM82, LH88, CWZ90, Str92, PCK93]. Pre-vious to this paper, it was an open question whether suchprecision could ever be obtained by any method that usesgraphs to model storage usage. Furthermore, as far as weknow, no other shape-analysis/type-checking method (whetherbased on graphs or other principles [HN90, Hen90, LR91,Deu92, CBC93, Deu94]) has the ability to determine that\circular list-ness" is preserved by the list-insert program.What does our method do that allows it to obtain suchqualitatively better results on the above-mentioned programsthan previous methods? A detailed examination of the dif-ferences between our algorithm and previous algorithms isdeferred to Section 6; however, a brief characterization ofsome of the di�erences is as follows:� Previous methods have used allocation sites to name shape-nodes [JM82, CWZ90, PCK93]. Allocation-site informa-tion imposes a �xed partition on the memory. In con-trast, our approach deliberately drops information aboutthe concrete locations. There is only an indirect connec-tion to the run-time locations: Shape-graph nodes arenamed using a (possibly empty) set of variables. Thevariable set of a shape-graph node in the shape-graph forprogram-point v consists of variables that, for some exe-cution sequence ending at v, must all point to the samerun-time location.� Like other shape-analysis methods, our method clusterscollections of run-time locations into summary nodes. Inour approach, nodes that are not pointed to by vari-ables are clustered into a single node. Chase, Wegman,and Zadeck observed that their analysis method cannothandle programs such as the list-reversal program be-

cause it lacks a way to materialize (\un-summarize") sum-mary nodes at certain key points of the analysis [CWZ90,pp. 309]. Our shape-node naming scheme allows our methodto materialize copies of the summary node (as non-summarynodes) whenever a pointer variable is assigned a previ-ously summarized run-time location.� In the analysis of an assignment to a component, sayx:cdr := nil, our method always removes x's cdr edges.Previous methods either never remove these edges [Str92]or have some heuristics to remove such edges under cer-tain conditions [JM81, LH88, CWZ90, PCK93]. (This un-usual characteristic of our method is enabled by both thenode-naming scheme and the materialization technique.)� We use sharing information to increase the accuracy of theprimitive operations used by our method. More speci�-cally, we keep track of shape-nodes that may be the targetof more than 1 pointer from the heap. For example, whena linked data structure is traversed, say via a loop con-taining an assignment x := x:cdr , the sharing informationis used to improve the precision of the materialization op-eration, which allows our algorithm to determine that xpoints to a list element on every iteration. The limitedform of sharing information used in [JM81, CWZ90] doesnot allow these methods to determine this fact.� The shape-node names also provide information that some-times permits our method to determine that a shared-node becomes unshared (e.g., this occurs in the programthat performs an insertion into a list). With the Chase-Wegman-Zadeck method, once a node is shared it re-mains shared forever thereafter. For programs that op-erate on lists and trees, the non-graph-based method ofHendren [Hen90] is sometimes able to determine that ashared-node becomes unshared. However, this methoddoes not handle data structures that contain cycles.An experimental implementation of the analysis methodhas been created; the examples presented in the paper havebeen prepared with the aid of this implementation.The remainder of the paper is organized as follows: Sec-tion 2 introduces the terminology and notation used in therest of the paper. Section 3 presents a concrete seman-tics for a language with destructive updating, in terms of\shape-graphs" in which nodes represent run-time locations.Section 4 introduces an abstract domain of \static shape-graphs" and shows how they can be used to approximatethe sets of shape-graphs that arise in the collecting seman-tics. Section 5 summarizes a few extensions to our basicapproach. Section 6 discusses related work. Due to spaceconstraints, we have omitted discussions of (i) other elab-orations and extensions of our basic approach, (ii) a proofthat our abstract semantics of static shape-graphs is safewith respect to the concrete semantics. This material canbe found in [SRW95].2 Terminology and Notation2.1 The LanguageWe assume we are working with an imperative language thatmeets the following general description: A program con-sists of assignment statements, conditional statements, loops(while, for, repeat), read statements, write statements, andgoto statements.1 The language provides atomic data (e.g.,1The treatment of procedures is discussed later, in Section 5.3.

integer, real, boolean, etc.) and constructor and selectoroperations (e.g., nil, cons, car, and cdr2), together withappropriate predicates (equal, atom, and null). We assumethat a read statement reads just an atom and not an entirelist, tree, or graph.A program is represented by a control-
ow graph G =(V;A), where V is the set of vertices and A � V �V is the setof arcs. G has a unique start vertex, which we assume hasno predecessors. The other vertices of the control-
ow graphrepresent the statements and predicates of the program inthe usual way; st(v) denotes the statement or predicate ofvertex v.Normalization Assumptions. For expository convenience,we will assume that programs have been normalized to meetthe following conditions:� Only one constructor or selector is performed per state-ment.� An expression cons(x; y) is executed in three steps: (i) al-locate the cons cell and assign it to a new temporaryvariable; (ii) assign x into the car component; (iii) assigny into the cdr component.� In each statement, the same variable does not occur onboth the left-hand and right-hand side.� Each statement of the form l := r where r 6� nil is pre-ceded by an assignment of the form l := nil.� All allocation statements are of the form x := new (asopposed to x:sel := new).Thus, for every vertex v 2 V in which a pointer manipu-lation is performed, st(v) has one of the following forms:x := nil, x:sel := nil, x := new, x := y, x := y:sel ,or x:sel := y, where y 6� x. (In our implementation, thework of putting a program into a form that meets these as-sumptions is carried out by a preprocessor.) Note that thenumber of temporary variables that are introduced to meetthese restrictions is, in the worst case, linear in the size ofthe original program. 2The normalization assumptions are not essential, butsimplify the presentation. For example, the last assump-tion allows us to separate the \kill" aspects of a statement(e.g., x := nil) from the \gen" aspects (e.g., x := y:sel0,assuming x points to nil) in the semantics. (See Figures 2and 6.)Example 2.1 Figure 1 shows (a) a program that performsa list reversal via destructive updating, (b) the program innormalized form, and (c) the control-
ow graph of the pro-gram in normalized form. The list initially pointed to byvariable x is transformed into its reversal. After each itera-tion, y points to the reversal of a successively longer pre�xof the original list. 2To simplify the formulation of the analysis method, itwill be stated for a single �xed (but arbitrary) program.The set of pointer variables in this program will be denotedby PVar .2.2 Shape-GraphsBoth the concrete and abstract semantics are de�ned interms of a single uni�ed concept of \shape graph", which2Throughout the paper, our presentation is couched in terms of theLisp primitives for manipulating heap-allocated storage. However,this is not due to any basic limitation of our method; our shape-analysis algorithm extends readily to the case of pointers to user-de�ned types that have more than two �elds.2

/* x points to an unshared list */y := nilwhile x 6= nil dot := yy := xx := x:cdry:cdr := todt := nil(a)/* x points to an unshared list */y := nilwhile x 6= nil dot := nilt := yy := nily := xt1 := nilt1 := x:cdrx := nilx := t1y:cdr := nily:cdr := todt1 := nilt := nil(b)

?y := nil?v1 ?

�

v2 t := nil?v3 t := y?v4 y := nil?v5 y := x?v6 t1 := nil?v7 t1 := x:cdr?v8 x := nil?v9 x := t1?v10 y:cdr := nil?v11 y:cdr := t

�

v12 t1 := nil?v13 t := nil?v14v15(c)Figure 1: A program, the program in normalized form, andthe program's labeled control-
ow graph.is de�ned as follows:De�nition 2.2 A shape-graph is a �nite directed graphthat consists of nodes, called shape-nodes, and two kindsof edges: variable-edges and selector-edges. A shapegraph is represented by a pair of edge sets, hEv; Esi, where� Ev is the graph's set of variable-edges, each of which isof the form [x; n], where x 2 PVar and n is a shape-node.� Es is the graph's set of selector-edges, each of which isof the form hs; sel ; ti, where s and t are shape-nodes, andsel 2 fcar ; cdrg.We overload the symbol Ev to also mean the functionthat returns a variable's Ev successors. That is, for x 2PVar, we de�ne Ev(x) to be Ev(x) def= fn j [x; n] 2 Evg:Similarly, for a shape-node s and sel 2 fcar ; cdrg, we de-�ne Es(s; sel) to be Es(s; sel) def= ft j hs; sel ; ti 2 Esg:(The intended meaning of a use of Ev or Es will always beclear, according to whether arguments are supplied or not.)Given SG = hEv; Esi, we de�ne shape nodes(SG) as fol-lows: shape nodes(SG) def= fn j [�; n] 2 Evg [fn j h�; �; ni 2Esg [fn j hn; �; �i 2 Esg. The class of shape-graphs isdenoted by SG. 2Note that for a given shape-graph SG, shape nodes(SG)is uniquely de�ned: it consists of the set of non-isolatednodes in SG (i.e., the nodes that are touched by at least

one edge). It is for this reason that we do not explicitly listthe node set when specifying a shape-graph.The shape-graphs that arise in the concrete semantics forthe language have somewhat di�erent characteristics fromthe ones that arise in the abstract semantics. However,the fact that both are de�ned from a shared root concept(namely De�nition 2.2) helps in de�ning the abstraction re-lation that relates them (see De�nitions 4.4 and 4.5).In the concrete semantics, which is given in Section 3,the result of an execution sequence is a shape-graph thatrepresents the state of heap-allocated storage in memory.In this case, each shape-node represents a unique run-timelocation, and for each variable x, either Ev(x) is a singletonset (say fng) or it is empty. Furthermore, Es(n; car) andEs(n; cdr), which represent the run-time locations pointedto by the car and cdr �elds of n, are also either singletonsets or empty (depending on whether these �elds point toallocated locations or not). Such properties are captured inthe following de�nition:De�nition 2.3 A shape-graph is deterministic if (i) forevery x 2 PVar, jEv(x)j � 1 and (ii) for every shape-noden and sel 2 fcar ; cdrg, jEs(n; sel)j � 1. The class of deter-ministic shape-graphs is denoted by DSG. 2Finally, in several places we make use of a \garbage-collection" operation to eliminate shape-nodes that are notreachable from any of the program variables.De�nition 2.4 The function gc:SG ! SG is de�ned bygc(hEv; Esi) def= hEv; E0si, where hs; sel ; ti 2 E0s i� hs; sel ; ti 2Es and there exists [x; r] 2 Ev such that there is a path ofselector-edges in Es from r to s. 23 The Concrete SemanticsIn this section, we present a concrete semantics in whichdeterministic shape-graphs are used to represent the mem-ory state (i.e., DSG shape-nodes represent \cons-cells"), andthe meaning of an assignment statement is a deterministicshape-graph transformer. This concrete semantics is used tode�ne a concrete collecting semantics that associates a setof possible shape-graphs with each point in the program.Figure 2 contains the semantic equations of the concretesemantics. The meaning of a statement st is a function[[st]]DSG :DSG ! DSG. (When examining the last fourequations in Figure 2, bear in mind that, because of theNormalization Assumptions of Section 2.1, before each ofthe statements executes it is known that the left-hand sideevaluates to nil. Thus, the last four equations need onlyhandle the \gen" aspects of the statements' semantics. The\kill" aspects are handled by the �rst two equations of Fig-ure 2.) The DSG transformers listed in Figure 2 cover the sixkinds of pointer-manipulation statements; all the other DSGtransformers | for predicates and for assignment state-ments that do not perform any pointer manipulations |are the identity function.By design, the \concrete" semantics is somewhat non-standard. The only part of the store that the concrete se-mantics keeps track of is the heap-allocated storage; fur-thermore, it does not interpret predicates, read statements,and assignment statements that do not perform pointer ma-nipulations. These assumptions build a small amount of ab-straction into the \concrete" semantics. The consequence of3

[[x := nil]]DSG(hEv; Esi) def= hEv � f[x; �]g; Esi[[x:sel0 := nil]]DSG(hEv; Esi)def= hEv; Es � fhs; sel0; �i j [x; s] 2 Evgi[[x := new]]DSG(hEv; Esi) def= hEv [f[x; nnew]g; Esi[[x := y]]DSG(hEv; Esi) def= hEv [f[x; n] j [y; n] 2 Evg; Esi[[x := y:sel0]]DSG(hEv; Esi)def= hEv [f[x; t] j [y; s] 2 Ev; hs; sel0; ti 2 Esg; Esi[[x:sel0 := y]]DSG(hEv; Esi)def= hEv; Es [fhs; sel0; ti j [x; s]; [y; t] 2 EvgiFigure 2: The concrete semantics [[st]]DSG :DSG ! DSG.The shape-graph transformer associated with all predicatesand all assignment statements that do not perform anypointer manipulations is the identity function. The termnnew denotes an operation that generates a new shape-node(i.e., a new run-time location).these assumptions is that the collecting semantics may asso-ciate a control-
ow-graph vertex with more concrete shape-graphs (i.e., DSGs) than would be the case were we to startwith a conventional concrete semantics. (Our assumptionsare patently safe, and so we will not take the space here tojustify them further.)For simplicity, we do not introduce any \garbage-collectionoperations" in the concrete semantics to eliminate nodesfrom DSGs that are not reachable from any of the programvariables. Also, dereferences of nil pointers are ignored.They are handled in [SRW95].We now turn to the collecting semantics. For a control-
ow-graph vertex v 2 V , let pathsTo(v) be the set of pathsin the control-
ow graph from start to predecessors of v.De�nition 3.1 The collecting semantics cs :V ! 2DSGis de�ned as follows:cs(v) def= f [[st(vk)]]DSG(� � � ([[st(v1)]]DSG(h�; �i))) j[v1; : : : ; vk] 2 pathsTo(v) g24 The Abstract SemanticsIn this section, we present a shape-analysis technique thatuses a restricted subset of shape-graphs, called static shape-graphs, to summarize the possible shapes that heap-allocatedstorage can take on.Example 4.1 Suppose x points to a �ve-element list at thebeginning of the list-reversal program. Column two of Fig-ure 3 shows the DSGs that arise at vertex v2. The abstract(summarized) representations for the six DSGs are shown incolumn three. The abstract value that is computed by theabstract semantics is the graph shown in the iteration-4 rowof column four. (In this example, this graph is exactly theunion of the six graphs shown in column three.) 2Static shape-graphs are de�ned in Section 4.1, the ab-straction function is de�ned in Section 4.2, and the abstractsemantics is given in Section 4.3. The reverse program isused as a running example. Section 4.4 explains the reasonsfor the accuracy of the analysis method, and shows that themethod is capable of handling the insertion of an element atan arbitrary point in a linked list.

4.1 Static Shape-GraphsUnlike the concrete shape-graphs of the collecting seman-tics, the static shape-graphs of the abstract semantics arenon-deterministic: Ev(x), Es(n; car), and Es(n; cdr) mayeach yield a set with more than one shape-node. In ad-dition, static shape-graphs are of bounded size. This isachieved by our naming scheme for shape-nodes: the nameof a shape-node is a (possibly empty) set of program vari-ables; in general, the abstraction function clusters multipleconcrete shape-nodes into a single static shape-node.De�nition 4.2 A static shape-graph is a pairhSG; is sharedi, where� SG is a shape-graph.� The set shape nodes(SG) is a subset of fnX j X �PVarg.� is shared is a function of type shape nodes(SG) !ffalse; trueg.The class of static shape-graphs is denoted by SSG. 2In the following de�nition, we impose an order on SSGswhere SG v SG0 if SG0 contains more edges than SG.De�nition 4.3 Let SG = hhEv; Esi; is shared i and SG0 =hhE0v; E0si; is shared 0i. We de�ne the following ordering onSSG: SG v SG0 if and only if� Ev � E0v.� Es � E0s.� For every n 2 shape nodes(SG),is shared(n)) is shared 0(n).2 The domain SSG is a complete join semi-lattice with ajoin operator t de�ned by:SG t SG0 def= hhEv [E0v; Es [E0si; is shared _ is shared 0i:4.2 The Abstraction FunctionOur task in this section is to de�ne the abstraction functionthat relates the domains 2DSG and SSG. However, beforeformally de�ning the abstraction function in De�nition 4.5,we �rst illustrate some of the semantic properties of SSGs.Column two of Figure 3 shows the DSGs that arise atvertex v2 for all �ve iterations of the loop in the list-reversalprogram when input-list x is a �ve-element list. Columnthree shows their corresponding abstract values (i.e., SSGs).We note the following:(i) In each SSG in column three, a shape-node nZ , whereZ 6= �, represents a unique run-time location in thecorresponding DSG in column two| the location pointedto by every one of the variables in Z. However, acrossthe collection of SSGs that are the abstractions of the(several di�erent) DSGs that arise on di�erent loop it-erations, nZ will, in general, denote di�erent run-timelocations. For example, shape-node nfx;t1g representsthe run-time locations l2, l3, l4, and l5 in the DSGsthat arise on iterations 1, 2, 3, and 4, respectively.4

Iter. DSG b�(DSG) Approx. sequence for SGv20 x- rl1 - rl2 - rl3 - rl4 - rl5 rn� ?x- rnfxg - hh�; �i; �n:falsei
1 x-t1- rl2 - rl3 - rl4 - rl5y- rl1 rn� ?x-t1- rnfx;t1g -y- rnfyg rn� ?x- rnfxg -
2

x-t1- rl3 - rl4 - rl5y- rl2 - t?rl1
rn� ?x-t1- rnfx;t1g -y- rnfyg - t�rnftg rn� ?x- rnfxg @@Rx-t1- rnfx;t1g -y- rnfyg

3
x-t1- rl4 - rl5y- rl3 - t?rl2 - rl1

rn� ?x-t1- rnfx;t1g -y- rnfyg - t�rnftg 6 rn� ?x- rnfxg @@Rx-t1- rnfx;t1g -y- rnfyg - t�rnftg
4

x-t1- rl5y- rl4 - t?rl3 - rl2 - rl1
rn� ?x-t1- rnfx;t1gy- rnfyg - t�rnftg 6 rn� ?x- rnfxg @@Rx-t1- rnfx;t1g -y- rnfyg - t�rnftg 6

5 y- rl5 - t?rl4 - rl3 - rl2 - rl1
rn� ?

y- rnfyg - t�rnftg 6 The �xed pointhas beenreached.
Figure 3: Columns two and three show the DSGs and the corresponding SSGs, as mapped by b�, that arise at vertex v2 forthe �ve iterations of the loop in the list-reversal program, when the input x is a �ve-element list. Column four shows the SSGvalues that SGv2 takes on during the process of �nding the solution to the equations of the abstract semantics. For each ofthe shape-nodes in all of the SSGs, the value of is shared is false.(ii) In contrast, shape-node n� can represent multiple run- time locations of a single DSG. For example, in the5

SSG in column three of the iteration-0 row, n� rep-resents the run-time locations l2, l3, l4, and l5 of theDSG in column two. In the SSG in column three ofthe iteration-5 row, n� represents the run-time loca-tions l3, l2, and l1.(iii) In di�erent SSGs, the same run-time location may berepresented by di�erent SSG shape-nodes. For in-stance, consider the SSGs in column three of Figure 3in top-to-bottom order. Location l1 is represented byshape-nodes nfxg, nfyg, nftg, n�, n�, and n�; locationl3 is represented by n�, n�, nfx;t1g, nfyg, nftg, and n�;location l5 is represented by n�, n�, n�, n�, nfx;t1g,and nfyg.There is an important conclusion to draw from these ex-amples: It is incorrect to think of a shape-node as represent-ing a �xed partition of memory. Instead, the ideas to keepin mind are the following:The variable set of a shape-node in the shape-graph for program-point v consists of variablesthat, for some execution sequence ending at v,must all point to the same run-time location. Bygoing from DSGs to SSGs, we deliberately dropinformation about the concrete locations, but wekeep information that indicates, for some execu-tion sequence ending at v, what variables mustall point to the same location.A consequence of this abstraction is that two di�erentshape-nodes nX and nY such that X \ Y 6= � representincompatible con�gurations of variables; that is, nX and nYcannot possibly represent information from the same DSG.This means that the following structural invariants hold forthe SSGs that arise in the abstraction process:Invariant (i) (\Equality-or-disjointness of edge end-points")For all hnX ; sel ; nY i 2 Es, either X = Y or X \ Y =�. For example, in the SSG in column four of theiteration-4 row, the selector-edge hnfyg; cdr ; nftgi sat-is�es fyg \ ftg = �. This SSG could not contain aselector-edge such as hnfxg; cdr ; nfx;t1gi.Invariant (ii) If is shared(n) = true for a node n, thenone or more of the following conditions must hold:(a) There exists a selector edge from n� to n. Since n�can represent multiple locations, this single edge canrepresent two or more selector edges in a given DSG.(b) There exist two selector edges from di�erent shapenodes, say, nZ1 and nZ2 where Z1 \ Z2 = � to n. Inthis case, there may exist a DSG that includes two se-lector edges: one from the run-time location pointedto by the set of variables Z1 and one from the run-time location pointed to by the set of variables Z2.(c) There exist two selector-edges (with di�erent se-lectors) from a single shape-node. (Figure 3 does notillustrate these conditions because none of the shape-nodes are shared.)Because the converse of Invariant (ii) need not hold, shar-ing information must be stored explicitly in SSGs. For ex-ample, in the SSG in column three of the iteration-0 row,is shared(n�) = false even though there exists a selectoredge from n� to itself and a selector edge from nfxg to n�. Inthis case, the fact that is shared(n�) = false indicates thatn�'s incoming edges represent DSG edges that can neversimultaneously point to the same DSG node.The abstraction function � is de�ned in De�nition 4.5;� makes use of several auxiliary functions whose de�nitions

are given in De�nitions 4.4 and 4.5. De�nition 4.4 de�nesan operation for renaming shape-nodes. (This function willbe used both in the abstraction function and in the abstractsemantics.)De�nition 4.4 Let SG = hEv; Esi be a shape-graph, andlet p: shape nodes(SG)! ffalse; trueg andf : shape nodes(SG) ! fnX j X � PVarg be functions. Wede�ne four projection operations with respect to f as follows:(Ev #f) def= f[x; f(n)] j [x; n] 2 Evg(Es #f) def= fhf(s); sel ; f(t)i j hs; sel ; ti 2 Esg(p#f)(nX) def= _fnjf(n)=nXg p(n)Finally, hhEv; Esi; pi#f def= hhEv #f; Es #fi; p#fi. 2De�nition 4.5 (The Abstraction Function) The func-tion �s[DSG]: shape nodes(DSG) ! fnX j X � PVarg isde�ned as follows: �s[DSG] def= �r:nfx2PVarj[x;r]2EvgThe function induced is shared [DSG] from shape nodes(DSG)to ffalse; trueg is de�ned as follows:induced is shared [DSG](t) def= jfh�; �; ti 2 Esgj � 2The abstraction function �: 2DSG ! SSG is de�ned by:�(S) def= GDSG2S b�(DSG)whereb�(DSG) def= letDSG0 = gc(DSG) inhDSG0; induced is shared [DSG0]i#�s[DSG0]2 The core of De�nition 4.5 is the operation of projection(#) with respect to �s[DSG0]. The function �s[DSG0] es-tablishes the relationship between the nodes of a DSG andtheir corresponding nodes in the SSG. For example, con-sider the iteration-1 row of Figure 3. In column two, DSGnode l2 is pointed to by program variables x and t1 andis mapped by �s[DSG0] to SSG node nfx;t1g (see columnthree). DSG nodes l3, l4, and l5, which are not pointed to(directly) by any variables, are mapped to SSG node n�. Ingeneral, �s[DSG0] generates a �nite set of SSG nodes fromthe a priori unbounded number of DSG nodes in DSG0.The projection operation then collapses the DSG onto thesmaller set of nodes, while preserving aspects of its structure.We say that a shape-node nX represents a shape-node nin DSG0 if �s[DSG0](n) = nX .The function induced is shared [DSG] checks whether anode has 2 or more predecessors in DSG. Because of theprojection performed with respect to �s[DSG0], an SSGnode's sharing value is true if any of the DSG nodes it rep-resents has 2 or more predecessors in DSG0. (This aspect of�s[DSG0] is not illustrated by the example presented in Fig-ure 3.) On the other hand, if projection-function �s[DSG0]sets the sharing value of SSG-node nZ to false, this meansthat the DSG node (or nodes) that nZ represents all onlyhave at most one predecessor. For example, consider the6

iteration-0 row of Figure 3. In the SSG in column three, n�represents the run-time locations l2, l3, l4, and l5, each ofwhich has exactly one predecessor in the DSG (see columntwo). Consequently, is shared(n�) = false.Note one role of the gc operation that appears in thede�nition of b�: if DSG contains a garbage shape-node thathas 2 or more predecessors, this will be �ltered out by thegc operation and will not a�ect the value of is shared(n�).Example 4.6 De�nition 4.5 provides a way of identifyinga shape-graph with a data type. Figure 5 shows the shape-graphs that represent �ve kinds of data types. For each DSGSG in one of the �ve indicated classes, b�(SG) approximates(v) the corresponding graph shown in Figure 5. (For themoment, ignore graph (f).)The reason why approximates (v) is used here is thatthe shape-analysis algorithm is a conservative algorithm andthus the shape-graphs produced may have super
uous edges.Therefore, when the algorithm reports that a variable pointsto a circular list, it may actually point to a non-circular list;however, when the algorithm reports that a variable pointsto a non-circular list, it will never point to a circular list.This kind of conservative approximation is appropriate foruse, for example, in parallelizing compilers [HNH92, HG92].(An extension of our basic technique allows de�nitely circu-lar structures to be identi�ed. See Section 5.4.) 24.3 The Abstract InterpretationThe abstract meaning function [[]]SSG :SSG ! SSG for thepointer-manipulation statements is given in Figure 6. Theoperations presented in Figure 6 manipulate variable-edges,selector-edges, and sharing information, as well as the aliasinformation that is maintained in the shape-node names ofSSGs. It has been shown that these SSG transformers areconservative with respect to the concrete semantics de�nedin Figure 2 (see [SRW95]).The key property of the abstract semantics is that eachabstract assignment operation creates an SSG that conser-vatively covers all the possible new con�gurations of variablesets whose members all point to the same run-time location(i.e., DSG shape-node). This permits an unusual treatment(for a static-analysis algorithm, that is) of statements of theform x:sel0 := nil. When the algorithm processes such astatement, it always removes the sel0 edges emanating fromwhat x points to. We call this operation strong nulli�cation.Example 4.7 Figure 4 shows a simple example that illus-trates strong nulli�cation. Note that after statement y := xin the then-branch of the conditional, x and y point to thesame run-time location. This is re
ected in SG2 by the factthat x and y point to a single shape-node, nfx;yg. SG3 is theunion of SG2 with SG1; x and y each point to two shape-nodes in SG3. Because nfx;yg in SG3 represents only run-time locations that are pointed to by both x and y (whichoccurs only on some execution sequences), it is safe for theabstract semantics for statement y:cdr := nil to eliminatethe edge from nfx;yg to nftg (see SG4).Note that if nfxg and nfx;yg were merged into one shape-node in SG3, then it would not be possible to perform astrong nulli�cation because a run-time location pointed toby x alone does have a cdr -edge emanating from it (i.e., tothe node that t points to). 2

x := newy := newt := newx:cdr := tSG1 = t�rnftgx- rnfxg -y- rnfygif � � � theny := xSG2 = t�rnftgy-x- rnfx;yg -�SG3 = t�rnftgx- rnfxg -x-y- rnfx;yg ��� y�rnfygy:cdr := nilSG4 = t�rnftgx- rnfxg -x-y- rnfx;yg y�rnfygFigure 4: A program that illustrates strong nulli�cation.We now discuss the individual cases of the abstract mean-ing function (Figure 6), illustrating the most important fea-tures using Figure 7, which shows the �nal SSGs computedfor each program point by abstract interpretation of the de-structive list-reversal program. Each block of Figure 7 in-dicates the shape of memory just before the program-pointlabel that appears at the bottom of the block. The textat the top of a block indicates the preceding program point(or points) in the control-
ow graph and the action(s) takenthere. For example, v15's one predecessor is the statementt := nil at v14.(On �rst reading, it may be helpful to skip the remainderof this section and proceed directly to Section 4.4.)� For an assignment x := nil, the projection operation isused to rename shape-nodes by removing x from their\name". Note that this may cause what were formerlydistinct shape-nodes to be merged.Example. In the transition between blockv7 and block v8 of Figure 7 the assignmentt1 := nil causes nfy;x;t1g and nfy;xg to bemerged. 2� For an assignment x:sel0 := nil, the SSG transformergiven in Figure 6 removes all of x's sel0 selector-edges(what we called \strong nulli�cation" above). Thevariable set of a shape-node in the SSG for a program-point v consists of variables that, for some execution7

rn� ?x- rnfxg - rn� 6r6rx- rnfxg ?? rn� 6 �- r6r
x- rnfxg ????(a) A linked-list (b) A tree (c) An arbitrary graph

rn� ?6x- rnfxg - rn� ?6x- rnfxg -? rn� ?6 ���	x- rnfxg -? @@@Rpnnil(d) A possibly cyclic listof length � 2 (e) A possibly cyclic listof length � 1 (f) A possibly cyclic listof length � 1 (see Section 5.4)Figure 5: SSGs that represent �ve kinds of data types. For each of the shape-nodes in all of the SSGs but (c), the value ofis shared is false. In the graph (c) both nodes are shared.sequence ending at v, all point to the same run-timelocation; therefore, our method can always remove x'ssel0 selector-edges.3Example. In Figure 7, the transition be-tween v11 and v12 removes all of y's cdr selector-edges. 2The other important aspect of the SSG transformerfor x:sel0 := nil is the way information in shape-nodenames is used to reset the sharing information. Thisis based on Invariant (ii) of the abstraction process,as described in Section 4.2. (The resetting of sharinginformation by the SSG transformer is not illustratedby the list-reversal program since is shared is false forall shape-nodes in all shape-graphs that arise. Thisissue is discussed further at the end of Section 4.4.)� For an assignment x := new, a new unshared nodenfxg is created. All other shape-nodes are una�ected.� For an assignment x := y, the shape-node names arechanged to re
ect the fact that whatever y was point-ing to before is now also pointed to by x. In addition,new variable-edges are added to re
ect the assignmentof y to x.3Other shape analyses do not handle this statement precisely, orhandle it precisely only under certain circumstances. However, we arenot claiming that our method is somehow \able to treat all statementsprecisely". In Figure 6, the inevitable loss of precision intrinsic tostatic-analysis occurs in the treatment of statements of the form x :=y:sel0 (when y points to n�), rather than in statements of the formx:sel0 := nil. In particular, in the SSG transformer for x := y:sel0,a node-materialization operation is used to create shape-nodes thatconservatively cover all the possible new con�gurations of variablesets whose members all point to the same run-time location.

Example. See the transition between blockv6 and block v7 of Figure 7. 2� The SSG transformer for an assignment x := y:sel0is the most elaborate operation. The reason is thaty:sel0 may point to many nodes, and we have to cre-ate an SSG that conservatively covers all the possiblenew con�gurations of variable sets whose members allpoint to the same run-time location (i.e., DSG shape-node) after the assignment. That is, if y:sel0 pointsto nZ , then we need to \materialize" a copy of nZ |producing a \new" node n(Z[fxg) from \old" node nZ .In de�ning this materialization operation, the goal isto cover conservatively all the possibilities, yet at thesame time not introduce too many super
uous edgesthat prevent the abstract semantics from being ableto verify interesting properties, e.g., that a variablepoints to a list.Example. See the transition between blockv8 and block v9 of Figure 7, in which nodenft1g is materialized from n�. 2In what follows, let nY be a shape-node that y pointsto. For every node nZ pointed to by y:sel0, we ma-terialize a new node n(Z[fxg) and direct the followingedges to n = n(Z[fxg):{ Old variable-edges that point to nZ before theassignment. (This does not occur in the transitionbetween block v8 and block v9 of Figure 7.){ A new variable-edge from x. (See variable-edge[t1; nft1g] in block v9 of Figure 7.){ A sel0 selector-edge from nY . This edge replacesthe old sel0 selector-edge that emanates from nY8

[[x := nil]]SSG(hhEv; Esi; is sharedi) def= (gc(hhEv � [x; �]; Esi; is shared i))#�nX :n(X�fxg)[[x:sel 0 := nil]]SSG(hhEv; Esi; is sharedi) def= hhEv; E0si; is shared 0iwhere E0s = (Es � fhnX ; sel0; �i j x 2 Xg)and is shared 0(n) = is shared(n) ^ hn�; �; ni 2 E0s (a)_ 9nZ1 ; nZ2 : Z1 \ Z2 = �; hnZ1 ; �; ni; hnZ2 ; �; ni 2 E0s (b)_ 9nZ : hnZ ; car ; ni; hnZ ; cdr ; ni 2 E0s (c) ![[x := new]]SSG(hhEv; Esi; is sharedi) def= hhEv [f[x; nfxg]g; Esi; is shared [nfxg 7! false]i[[x := y]]SSG(hhEv; Esi; is shared i) def= let hhE0v; E0si; is shared 0i = hhEv; Esi; is shared i#�nZ :� n(Z[fxg) if y 2 ZnZ otherwisein hhE0v [f[x; nY] j [y; nY] 2 E0vg; E0si; is shared 0i[[x := y:sel0]]SSG(hhEv; Esi; is shared i) def= hhE0v; E0si; is shared 0iwhereE0v = Ev [Sy2Y;hnY ;sel0;nZi2Esf[z; n(Z[fxg)] j z = x _ [z; nZ] 2 EvgE0s = (Es � fhnY ; sel0; �i j y 2 Y g) [Sy2Y;hnY ;sel0;nZi2Es disjoint or equal(assign(x; nY ; sel0; nZ))assign(x; nY ; sel0; nZ) = fhnY ; sel0; n(Z[fxg)i j Y 6= Zg old! new[fhn(Z[fxg); sel ; nW i j (Y 6= Z _ sel 6= sel0); hnZ ; sel ; nW i 2 Esg new! old[� hn(Z[fxg); sel ; n(Z[fxg)i j ((Z = Y ^ sel = sel0) _ is shared(nZ));hnZ ; sel ; nZi 2 Es � new! new[� hnW ; sel ; n(Z[fxg)i j (y 62 W _ sel 6= sel0); is shared(nZ);hnW ; sel ; nZi 2 Es � old! newand is shared 0(nZ) = is shared(n(Z�fxg))[[x:sel 0 := y]]SSG(hhEv; Esi; is shared i) def= hhEv; E0si; is shared 0iwhere E0s = Es [disjoint or equal(fhnX ; sel0; nY i j [x; nX]; [y; nY] 2 Evg)and is shared 0(n) = is shared(n) _ jfhn 0; �; ni 2 Es j [y ; n] 2 Evgj � 1disjoint or equal(Es) def= fhnX ; sel ; nY i j hnX ; sel ; nY i 2 Es; X = Y _X \ Y = �gFigure 6: The SSG meaning function [[st]]SSG :SSG ! SSG for a statement st.before the assignment (see the �rst old ! newcase in Figure 6 and selector-edge hnfy;xg; cdr ; nft1giin block v9 of Figure 7.) This selector-edge is notadded by the old ! new case when Y = Z, be-cause all directly cyclic selector-edges are handledby the new! new case.{ An edge hn; sel0; ni is materialized when nY hasa sel0 selector-edge to itself. (See the new !new case). (This does not occur in the transitionbetween block v8 and block v9.){ Suppose there is a selector-edge hnY ; sel0; nZi.When nZ has a sel selector-edge to itself, a selector-edge hn; sel ; ni is materialized if hnZ ; sel ; nZi andhnY ; sel0; nZi represent edges that can simulta-neously co-exist in some DSG. This can happen
only if nZ is a shared node. (See the new! newcase). (This also does not occur in the transitionbetween block v8 and block v9.){ Selector-edges from other old predecessors of nZneed to be connected to n if they can simultane-ously coexist with the sel0 selector-edge from nY(see the second old ! new case). Here, we takeadvantage of the variables in shape-node names;in particular, a predecessor of nZ that has y in itsname is incompatible with nY . (This does not oc-cur in the transition between block v8 and blockv9.)We also connect n to the old successors of nZ for allthe selector-edges where Y 6= Z or sel 6= sel0 (see9

start v1: y := nil v12: y:cdr := t v2rn� ?x- rnfxg - rn� ?x- rnfxg HHHHjx-t1- rnfx;t1g ����*y- rnfyg -t - rnftg 6 rn� ?x- rnfxg HHHHjx-t1- rnfx;t1g ����*y- rnfyg -t - rnftg 6v1 v2 v3v3: t := nil v4: t := y v5: y := nilrn� ?x- rnfxg HHHHjx-t1- rnfx;t1g ����*y- rnfyg ����� rn� ?x- rnfxg HHHHjx-t1- rnfx;t1g ����*y-t - rnft;yg �����
rn� ?x- rnfxg HHHHjx-t1- rnfx;t1g ����*t - rnftg �����v4 v5 v6v6: y := x v7: t1 := nil v8: t1 := x:cdrrn� ?x-y- rnfy;xg HHHHjy-x-t1- rnfy;x;t1g����*t - rnftg ����� rn� ?x-y- rnfy;xg -t - rnftg ����� rn� 6

t1- rnft1g ?x-y- rnfy;xg -t - rnftg -v7 v8 v9v9:x := nil v10:x := t1 v11: y:cdr := nil
rn� 6

t1- rnft1g ?y- rnfyg -t - rnftg - rn� 6
t1-x- rnfx;t1g ?y- rnfyg -t - rnftg - rn� 6

t1-x- rnfx;t1g ?y- rnfygt - rnftg -v10 v11 v12v2 v13: t1 := nil v14: t := nilrn� ?x- rnfxg HHHHjx-t1- rnfx;t1g ����*y- rnfyg -t - rnftg 6 rn� ?x- rnfxg -y- rnfyg -t - rnftg 6 rn� ?x- rnfxg -y- rnfyg �����v13 v14 v15Figure 7: The �nal SSGs computed for each control-
ow-graph vertex by abstract interpretation of the destructive list-reversalprogram (e.g., block v2 corresponds to column four of the iteration-4 row of Figure 3). For each of the shape-nodes in all ofthe SSGs, the value of is shared is false.the new ! old case). (This does not occur in the transition between block v8 and block v9.)10

The operation disjoint or equal:SSG ! SSG elimi-nates selector-edges whose end-points do not satisfyInvariant (i) of the abstraction process (the \equality-or-disjointness" property for the variable-set names ofselector-edge end-points described in Section 4.2). (Thisdoes not �lter out any edges in the transition betweenblock v8 and block v9.)� Finally, for an assignment x:sel0 := y, a sel0 selector-edge is added between shape-nodes pointed to by x andshape-nodes pointed to by y. In addition, all nodesthat are pointed to by both y and a selector-edge be-fore the assignment are now considered to be sharednodes.Example. See the transition between blockv12 and block v2 of Figure 7. 2The abstract semantics associates an SSG, SGv, witheach v 2 V . Equationally, this can be de�ned as the least�xed point (under the ordering de�ned in De�nition 4.3) ofthe following system of equations in SGv:SGv = � hh�; �i; �n:falsei if v = startFhu;vi2A[[st(u)]]SSG(SGu) otherwise �(1)The least-�xed point of these equations can be found byiteration, starting from hh�; �i; �n:falsei.Example 4.8 The �nal abstract values for all of the ver-tices of the list-reversal program's control-
ow graph areshown in Figure 7. Among other things, this informationtells us is that if x's value is a list at the beginning of theprogram (see block v1) then y's value is a list at the end ofthe program (see block v15).Column four of Figure 3 shows the SSGs computed forvertex v2 of the list-reversal program during the successiveiterations of the �xed-point-�nding procedure. The �nalabstract value for vertex v2 (i.e., SGv2) is the graph shownin the iteration-4 row of column four. The elements of thisgraph can be interpreted as follows:� There are two shape-nodes that represent the head ofthe list that x points to: nfxg and nfx;t1g. The formerrepresents the situation where x points to the head of thelist and t1 points elsewhere (which only happens beforethe �rst iteration of the loop). The latter represents thesituation where x and t1 both point to the head of thelist. Shape-node nfyg represents the head of the reversedlist that y points to. Shape-node nftg represents the listthat t points to, which is a sublist of the list that y pointsto. Shape-node n� represents all the run-time locationsin the tails of the lists that x and t point to.� For each of the shape-nodes in the graph, the value ofis shared is false. The fact that is shared(n�) = false tellsus a number of interesting things about the memory state(i.e., DSG) produced by any execution sequence that endsat vertex v2: (1) It implies that selector-edges from x andfrom t cannot point to the same node (and consequentlythe tails of x and t cannot have a component in common).(2) Similarly, for every pair of di�erent run-time locationsin the tail of x or t, the selector-edges from these run-timelocations cannot point to the same node. Consequently,variables x and t must point to acyclic lists that do notshare any storage in common.2

Given how complicated the semantic equations in Fig-ure 6 are, the following theorem, whose proof can be foundin [SRW95], is reassuring:Theorem 4.9 (Correctness Theorem) For every control-
ow-graph vertex v, �(cs(v)) v SGv. 24.4 What the Analysis Algorithm Achievesand WhyThe abstract interpretation de�ned in Section 4.3 yields anew shape-analysis algorithm for �nding out informationabout the possible \shapes" that heap-allocated structuresin a program can take on. For certain programs | includ-ing ones in which a signi�cant amount of destructive updat-ing takes place | this algorithm is able to verify shape-preservation properties. Examples of such properties in-clude: (i) when the input to the program is a list, the outputis (still) a list; (ii) when the input to the program is a tree,the output is (still) a tree; and (iii) when the input to theprogram is a possibly circular list, the output is a possiblycircular list. For instance, we are able to conclude from theinformation reported by the algorithm about the list-reversalprogram that \list-ness" is preserved (see Figure 7).The algorithm is also able to determine that� \list-ness" is preserved by the list-insert program given inFigure 8 (which searches a list and splices a new elementinto the list).� \circular list-ness" is also preserved by the list-insert pro-gram. More precisely, if at the beginning of the insertprogram x is a possibly cyclic list of length � 1 (see Fig-ure 5(e)), then at the end of the program, x is a possiblycyclic list of length � 2 (see Figure 5(d)). (For details,see [SRW95, Appendix B].)It is instructive to consider the main reasons why theshape-analysis algorithm is able to produce accurate infor-mation about the list-reversal program. In analyzing thisprogram, the key issue is: \How does the algorithm keepthe y list separate from the x list?" There are two aspectsof the algorithm that contribute to the successful handlingof this problem.Cutting the list. The more clear-cut aspect is the removal ofy's cdr selector-edges by y:cdr := nil via strong nulli-�cation in the transition from block v11 to block v12 inFigure 7. This cuts the y list at the head, separatingthe �rst element, nfyg, from the tail, which x and t1point to.Materialization of nft1g from summary-node n�. Equally im-portant is the way the algorithm handles the advance-ment of t1 down the x list by t1 := x:cdr in the transi-tion from v8 to v9. At v8, x:cdr points to n�; however,the node-materialization operation causes a new non-summary shape-node, nft1g, to be materialized outof n�.4In the shape analysis of the list-reversal program, there isa crucial interaction between these two aspects. Suppose,for example, that in the transition between blocks v8 andv9 shape-node nft1g was not materialized out of summary-node n�, but instead variable t1 was merely set to point ton�. At v11, variables t1 and x would then both point to4Jocularly, we refer to n� as the \primordial soup", and the pro-cess of materializing a node such as nft1g from n� as \ladling a nodeout of the soup".11

n�. The removal of y's cdr selector-edges in the transitionfrom v11 to v12 would still separate the node that y pointsto (nfyg) from the list pointed to by x and t1 (which in thiscase is n�.). However, the very next transition, from v12 tov2, would set y's cdr �eld to t, whose cdr �eld points to n�,which is what x points to. At this stage, the two lists areno longer known to be separate lists!Note how di�erently things turn out when nft1g is ma-terialized from n� in the transition from v8 to v9: At v12, t1and x point to nfx;t1g, and thus in the transition from v12to v2 when y's cdr �eld is set to t, whose cdr �eld points ton�, x does not point to n�. Although n� occurs in both thetail of x and the tail of y, because is shared(n�) = false weknow that the two lists cannot share any storage in common;that is, x and y must point to disjoint acyclic lists.The two operations discussed above | cutting a list andadvancing a pointer down a list | are two of the four mainoperations of most list-manipulation algorithms. The thirdand fourth common list-manipulation operations | splicinga new element into a list and removing an element from a list| can, in many cases, be handled accurately by our shape-analysis algorithm, even if shape-nodes temporarily becomeshared! (This is not illustrated by the list-reversal program,but is discussed in the next paragraph.) This points up thestrength of our approach: Our algorithm handles all fourof the basic list-manipulation operations with a remarkabledegree of precision | as well as similar tree- and circular-list-manipulation operations.Let us now turn to the issue of how information in shape-node names can sometimes be used to reset a shape-node'ssharing information from true to false. This ability is themain reason why our algorithm is able to determine that thelist-insert program of Figure 8 preserves both \list-ness" and\circular list-ness".This situation arises in the list-insert program at ver-tices v11, v12, and v13 of the control-
ow graph, where thenew element is spliced into the list. (We assume that atthe beginning of the program shown in Figure 8, x pointsto an unshared list of length 1 or more and e points to thenew element to be inserted.) The key step is the transitionfrom v12 : y:cdr := nil to v13. In the immediately preced-ing transition, from v11 to v12 (see Figures 9(a) and 9(b)),e:cdr is assigned the value t, which adds a new selector-edgeinto nftg and causes is shared(nftg) to be set to true in theshape-graph for v12.In the SSG transformer given in Figure 6 that covers thecase of assignments of the form y:cdr := nil, information inshape-node names is used to reset the sharing information.In particular, nftg meets none of the three conditions foris shared to be true at vertex v13 and so is shared(nftg) isreset to false at v13. (See Figure 9(c).)Remark. It is interesting to note that if the assignment atv12 were e:cdr := nil, rather than y:cdr := nil, is shared(nftg)would be reset to false at v13, even though there would betwo incoming selector-edges to nftg: hnfz;yg; cdr ; nftgi andhnfx;yg; cdr ; nftgi. This is consistent with the concrete se-mantics because the shape-node names nfz;yg and nfx;yg tellus that hnfz;yg; cdr ; nftgi and hnfx;yg; cdr ; nftgi are \incom-patible". Because fz; yg \ fx; yg 6= �, we know that nfz;ygand nfx;yg do not represent nodes that co-exist in any DSG.This explains condition (b) in the y:cdr := nil case of Fig-ure 6. 2

y := xwhile y:cdr 6= nil ^ : : : doz := y:cdry := zodt := y:cdre:cdr := ty:cdr := et := nilz := nile := nily := nil(a)y := nily := xwhile y:cdr 6= nil ^ : : : doz := nilz := y:cdry := nily := zodt := nilt := y:cdre:cdr := nile:cdr := ty:cdr := nily:cdr := et := nilz := nile := nily := nil(b)

?y := nil?v1 y := x?v2 ?
�

v3 z := nil?v4 z := y:cdr?v5 y := nil?v6 y := zv7
�

t := nil?v8 t := y:cdr?v9 e:cdr := nil?v10 e:cdr := t?v11 y:cdr := nil?v12 y:cdr := e?v13 t := nil?v14 z := nil?v15 e := nil?v16 y := nil?v17v18(c)Figure 8: A program that searches a list and splices a newelement into the list.5 Extensions5.1 Merging Shape NodesThe number of shape-nodes in an SSG is bounded by 2jPVar j.Unfortunately, for some pathological programs the numberof shape-nodes can actually grow to be this large (althoughour limited experience to date suggests that this is unlikelyto arise in practice). It is possible to overcome this problemby making use of a widening operator that merges selectedshape-nodes. By this means, we can guarantee that a �xedpoint of Equation (1) of Section 4.3 can be found in polyno-mial time; the widening operator simply has to be appliedwhenever necessary to limit the cardinality of shape-nodename sets to some chosen constant. (This is similar in spiritto k-limiting [JM81], but is likely to produce more accurateresults because limiting the cardinality of name sets still pre-serves most of the structural information about the graph.)Details can be found in [SRW95].12

x- rnfxg - ?x-y- rnfx;yg ����
y-z - rnfz;yg -t - rnftg -? rn� ??

e- rnfeg(a) The shape-graph for vertex v11. In this graph,is shared(nftg) = false.
x- rnfxg - ?x-y- rnfx;yg ����

y-z - rnfz;yg -t - rnftg -? rn� ??
e- rnfeg 6

(b) The shape-graph for vertex v12. In this graph,is shared(nftg) = true (shown in bold).
x- rnfxg - ?x-y- rnfx;yg

y-z - rnfz;yg t - rnftg -? rn� ??
e- rnfeg 6

(c) The shape-graph for vertex v13. In this graph,is shared(nftg) = false.Figure 9: The shape-graphs at vertices v11, v12, and v13 inthe list-insert program. These illustrate how is shared(nftg)is reset to false in the shape-graph for vertex v13.5.2 Finding Aliases and SharingIt is possible to use our shape-analysis algorithm to deter-mine whether two pointer variables x and y are possiblealiases just before vertex v by testing whether x and y pointto a common shape-node in SSG SGv. If x and y do point toa common node, we (conservatively) conclude that they maybe aliases. It is possible to extend this to a test of whethertwo access paths are \may aliases", as follows: First, we in-strument the original program with two additional tempo-rary variables (say t1 and t2) and code to advance t1 and t2down the two pointer-access paths in question. The code is

inserted just before v. Second, we apply our shape-analysisalgorithm. Third, we look in the SSG computed for vertexv to see if t1 and t2 may be aliases.We can also use this approach to determine if there ispossible sharing between components of two heap-allocateddata structures, which is precisely the kind of informationneeded to be able to compile programs to take advantage ofcoarse-grained parallelism. (See [SRW95].)5.3 Interprocedural AnalysisOur method can also be extended to handle procedure callsin a conservative way. Two fundamental problems need tobe resolved:� Representing multiple occurrences of the same local vari-able in (mutually) recursive procedures.� Accounting for the di�erent calling contexts in which aprocedure can occur.To approximate the local variables of recursive calls, weintroduce an extra variable x for every local variable x. Vari-able x is used as a representative for all copies of x in otherscopes. Shape-nodes whose name sets contain only barredvariables are a new kind of \summary node". Like n�, theycan represent multiple runtime locations from a single DSG.Using these ideas, we have extended the abstract semanticsto handle procedure calls and returns.The second problem can be resolved using one of theknown interprocedural techniques of Sharir and Pnueli [SP81].For example, a simple conservative solution is to consider aprocedure call as a goto to the called procedure and a re-turn from a procedure P as a goto to all the statements thatfollow an invocation of P . A more accurate solution can bedetermined by tabulating a \shape-graph-transformation"function for each procedure.5.4 Representing De�nitely Circular Struc-turesIn the SSGs de�ned in Section 4.1, there are no elements thatrepresent the �elds of nodes that point to atoms or nil (orare uninitialized). One consequence of this is that the shape-analysis algorithm is only able determine rather weak \data-type" properties. As pointed out in Example 4.6, when thealgorithm reports that a variable points to a circular list, itmay actually point only to a non-circular list. That is, thetype \circular list" really means \possibly circular list".By introducing three additional nodes, natom, nnil, andnuninit, much more accurate type properties can be obtainedin many cases. We impose the invariant on SSGs that all�elds of shape-nodes have at least one out-going selector-edge (possibly to natom, nnil, or nuninit). The consequenceof this re�nement is that this modi�ed domain of SSGs iscapable of representing de�nitely cyclic data structures.For example, with this extension the SSG shown in Fig-ure 5(d) represents a de�nitely cyclic list of length� 2 (mod-ulo the absence of edges from the car �elds to natom in thetwo shape-nodes); Figure 5(e) represents a de�nitely cycliclist of length � 1; and Figure 5(f) represents a possibly cycliclist of length � 1.
13

6 Related WorkThe shape-analysis problem was originally investigated byReynolds for a Lisp-like language with no destructive up-dating [Rey68]. Reynolds treated the problem as one ofsimplifying a collection of set equations. A similar shape-analysis problem, but for an imperative language support-ing non-destructive manipulation of heap-allocated objects,was formulated independently by Jones and Muchnick, whotreated the problem as one of solving (i.e., �nding the least�xed-point of) a collection of equations using regular treegrammars [JM81].In that same paper, Jones and Muchnick also began thestudy of shape analysis for languages with destructive up-dating. To handle such languages, they formulated an anal-ysis method that associates program points with sets of �-nite shape-graphs.5 To guarantee that the analysis termi-nates for programs containing loops, the Jones-Muchnickapproach limits the length of acyclic selector paths by somechosen parameter k. All nodes beyond the \k-horizon" areclustered into a summary node. The k-limiting approachhas two inherent drawbacks:� The analysis yields poor results for programs that ma-nipulate elements beyond the k-horizon. For example, inthe list-reversal program of Figure 1, little useful infor-mation is obtained. The analysis algorithm must modelwhat happens when the program is applied to lists oflength greater than k. However, the tail of such a listwill be treated (conservatively) as an arbitrary, and pos-sibly cyclic, data structure.� The analysis may be extremely costly because the numberof possible shape-graphs is doubly exponential in k.In addition to Jones and Muchnick's work, k-limiting hasalso been used in a number of subsequent papers (e.g., [HPR89]).Whereas Jones and Muchnick use sets of shape-graphs(in [JM81]), our work follows Jones and Muchnick [JM82],Larus and Hil�nger [LH88, Lar89], Chase, Wegman, andZadeck [CWZ90], and Stransky [Str92] who developed shape-analysis methods that associate each program point with asingle shape-graph. The use of a single shape-graph is pos-sibly less accurate than a method based on sets of graphs,but it leads to more compact representations, and thus ismore likely to lead to a practical shape-analysis algorithm.Jones and Muchnick [JM82], Chase, Wegman, and Zadeck[CWZ90], and Stransky [Str92] present similar methods inwhich the shape-nodes correspond to a program's allocationsites. These methods are more e�cient than the methodsdiscussed earlier, both from a theoretical perspective [CWZ90]and from an implementation perspective [AW93].The algorithm presented by Chase, Wegman, and Zadeckis based on the following ideas:� Sharing information in the form of heap reference counts(using 0, 1, and 1) is used to characterize shape-graphsthat represent list structures.6� Several heuristics are introduced to allow several shape-nodes to be maintained for each allocation site.� When x:sel0 is assigned to and x:sel0 points to a shape-node that represents a unique run-time location, the sel05In this section, we use the term \shape-graph" in the genericsense, meaning any �nite graph structure used to approximate theshapes of run-time data structures.6The idea of augmenting shape-graphs with sharing informationalso appears in the earlier work of Jones and Muchnick [JM81].

selector-edges emanating from the shape-node that x pointsto are overwritten (a so-called \strong update").The Chase-Wegman-Zadeck algorithm is able to identify list-preservation properties in some cases; for instance, it candetermine that a program that appends a list to a list pre-serves \list-ness". However, as noted by Chase, Wegman,and Zadeck, allocation-site information alone is insu�cientto determine interesting facts in many programs. For ex-ample, it cannot determine that \list-ness" is preserved foreither the insert program or the reverse program. In par-ticular, in the reverse program, the Chase-Wegman-Zadeckalgorithm reports that y points to a possibly cyclic structureand that the structures that x and y point to possibly shareelements in common.There are two major technical di�erences between our al-gorithm and the Chase-Wegman-Zadeck algorithm that leadto the improvements in accuracy obtained by our algorithm:\Strong Nulli�cation" For an assignment x:sel0 := y, theChase-Wegman-Zadeck method ordinarily performs a\weak update" (i.e., selector-edges emanating from whatx points to are accumulated). It performs a strong up-date only under certain specialized conditions.In our algorithm, because of the Normalization As-sumptions of Section 2.1, an assignment statementx:sel0 := y is transformed into two statements: x:sel0 :=nil, followed immediately by x:sel0 := y. When ouralgorithm processes the �rst of these statements, it (al-ways) removes the sel0 edges emanating from what xpoints to. We have called this operation \strong nul-li�cation", by analogy with \strong update". Whenthe algorithm processes the second statement, it in-troduces sel0 edges that emanate from the shape-nodethat x points to. Taken together, the e�ect is to over-write the sel0 edges emanating from the shape-nodethat x points to | in other words, for a statementin the original program of the form x:sel0 := y, ouralgorithm always performs a strong update.Example. In SG3 of Figure 4, nfxg, nfyg,and nfx;yg are separate nodes. Because nfx;ygrepresents only run-time locations that arepointed to by both x and y, it is safe for theabstract semantics to perform a strong nul-li�cation to nfx;yg (see SG4). 2The reason why it is possible for our algorithm to per-form strong nulli�cations (and hence strong updates)is because each abstract assignment operation of theabstract semantics creates an SSG that conservativelycovers all the possible new con�gurations of variablesets whose members all point to the same run-time lo-cation (i.e., DSG shape-node). If x is in the name ofan SSG shape-node n, then n represents a DSG nodewhose sel0 �eld will de�nitely be overwritten.Materialization In an assignment statement of the form x :=y:sel0, our algorithmmaterializes new shape-nodes thatconservatively cover all the possible new con�gurationsof variable sets whose members all point to the samerun-time location. For example, when y:sel0 points ton�, our algorithm materializes a new node nfxg outof n�. Furthermore, if is shared(n�) = false, this in-formation is used to exclude both of the two possibleselector-edges from n� to nfxg.14

In programs that use a loop containing an assignmentx := x:cdr to traverse an unshared linked list, thistechnique permits our method to determine that xpoints to an unshared list element on every iteration.For instance, this occurs in the transition from blockv8 to block v9 in Figure 7. As explained in Section 4.4,the materialization of nft1g in block v9 is one of thekey aspects of our algorithm that allows it to determinethat the list-reversal program preserves \list-ness".The Chase-Wegman-Zadeck algorithm lacks a node-materialization operation (although they did recognizethat the lack of one was a stumbling block to the ac-curacy of their method [CWZ90, pp. 309]).Chase, Wegman, and Zadeck use reference-count values 0,1, and1, whereas we use a Boolean-valued is shared value.However, this does not represent a signi�cant di�erence be-cause in our SSGs the selector-edges allow recovering thedistinction between 0 (no incoming edges) and 1 (at leastone incoming selector-edge, but is shared = false).Our method has been presented within the framework ofabstract interpretation, which allows us to prove that thealgorithm obtained is conservative with respect to the con-crete semantics. Chase, Wegman, and Zadeck give only in-formal arguments about the correctness of their algorithm.Because of several ad hoc features of the Chase-Wegman-Zadeck method, several changes would be necessary to re-formulate it as an abstract interpretation. For instance, therules they give for the \join" operation are complicated bythe fact that the result of \joining" two shape-graphs de-pends on the program point at which the operation is ap-plied. (For this reason, \join" is a misnomer in the lattice-theoretic sense.) In contrast, our join operation, which isessentially graph union, is the join operation in the latticeof SSGs de�ned in Section 4.1.Larus and Hil�nger [LH88, Lar89] devised a shape-analysisalgorithm that is based on somewhat di�erent principlesfrom the aforementioned work. As with our algorithm, shape-nodes are labeled with some auxiliary information. At �rstglance, their node-labeling scheme appears to be more gen-eral than ours: Whereas we use a set of variables to labeleach node, they use a regular expression (limited to be nolonger than some chosen constant k) representing pointer-access paths that may lead to an instance of the node. How-ever, their shape-node labels do not add any information totheir representation because the pointer-access expressionscan always be reconstructed from the graph stripped of nodelabels. In contrast, our labels | which in some sense rep-resent regular expressions of length-1 | do contribute es-sential information to our representation: When x is in thevariable-set of shape-node nX , we know that a strong nul-li�cation (and hence a strong update) can be performed onthe selector-edges emanating from nX .It is possible that it would be worthwhile to extend ourtechnique to use more complicated shape-node names of thekind that Larus and Hil�nger use. However, on many in-teresting examples, even with our \length-1 labels", our al-gorithm achieves greater accuracy than the Larus-Hil�ngeralgorithm does, no matter what value of k is chosen: Forexample, the Larus-Hil�nger algorithm is not able to deter-mine that programs such as the list-reversal and list-insertprograms preserve \list-ness".There are also several algorithms for �nding may aliasesthat are not based on shape-graphs. The most sophisticatedones are those of Landi and Ryder [LR91] and Deutsch [Deu94].

Deutsch's algorithm is particularly interesting because, forcertain programs that manipulate lists, it o�ers a way ofrepresenting the exact (in�nite set of) may aliases in a com-pact way. It can be shown that Deutsch algorithm yieldsmay-alias information for the list-reversal program that isequivalent to that produced by the algorithm of Section 4.1.However, both the Landi-Ryder and Deutsch algorithms donot determine that either \list-ness" or \circular list-ness" ispreserved by the insert program of Figure 9. The reason isthat due to the lack of a strong-nulli�cation operation, thesealgorithms cannot infer that the assignment y:cdr := nil inthe program shown in Figure 8(b) cuts the list pointed to byx (see Figures 9(b) and (c)). We do not mean to imply thatour method dominates the Landi-Ryder and Deutsch algo-rithms; there exist programs in which the Deutsch algorithmis more accurate than our algorithm.A di�erent approach was taken by Hendren, who de-signed an algorithm that handles only acyclic data struc-tures [HN90, Hen90]. Because of the choice to work withprograms that only manipulate acyclic structures, the al-gorithm does not have to have a way of representing cyclesconservatively. For this alias-analysis problem, she has givenan e�cient algorithm that manipulates matrices that recordaccess paths that are aliased.To the best of our knowledge, Hendren's algorithm is theonly algorithm besides ours that can detect that insertion ofan element into a list (respectively, tree) preserves the list(tree) structure. However, by design, Hendren's algorithmcannot determine such structure-preservation properties forprograms that handle cyclic lists.Myers presented an algorithm for interprocedural bit-vector problems that accounts for aliasing [Mye81]. Likeour shape-analysis algorithm, his algorithm also keeps trackof sets of aliased variables. He conjectured that in practicethe sizes of the alias sets remain small. However, Myers'swork does not handle heap-allocated storage and destructiveupdating. Therefore, his algorithm is signi�cantly simplerand he is even able to show that it is precise. In contrast,it is undecidable to give a precise solution to our problem,even in the absence of procedure calls [Lan92, Ram94].AcknowledgmentsWe are grateful for the helpful comments of Alain Deutsch,Christian Fecht, and Neil Jones. Laurie Hendren providedus with extensive and very helpful information about thecapabilities of her analysis technique.References[AW93] U. Assmann and M. Weinhardt. Interprocedural HeapAnalysis For Parallelizing Imperative Programs. InW. K. Giloi, S. J�ahnichen, and B. D. Shriver, editors,Programming Models For Massively Parallel Comput-ers, pages 74{82. IEEE Press, September 1993.[CBC93] J.-D. Choi, M. Burke, and P. Carini. E�cient
ow-sensitive interprocedural computation of pointer-induced aliases and side-e�ects. In ACM Symposiumon Principles of Programming Languages, pages 232{245, 1993.[CWZ90] D.R. Chase, M. Wegman, and F. Zadeck. Analysis ofpointers and structures. In SIGPLAN Conference onProgramming Languages Design and Implementation,1990.15

[Deu92] A. Deutsch. A storeless model for aliasing and its ab-stractions using �nite representations of right-regularequivalence relations. In IEEE International Confer-ence on Computer Languages, pages 2{13, 1992.[Deu94] A. Deutsch. Interprocedural may-alias analysis forpointers: Beyond k-limiting. In SIGPLAN Conferenceon Programming Languages Design and Implementa-tion, 1994.[Hen90] L. Hendren. Parallelizing Programs with RecursiveData Structures. PhD thesis, Cornell University, Jan1990.[HG92] L. Hendren and G.R. Gao. Designing programming lan-guages for analyzability: A fresh look at pointer datastructures. In Proceedings of the International Confer-ence on Computer Languages, pages 242{251, 1992.[HN90] L. Hendren and A. Nicolau. Parallelizing programswith recursive data structures. IEEE Transactions onParallel and Distributed Systems, 1(1):35{47, January1990.[HNH92] L. Hendren, A. Nicolau, and J. Hummel. Abstrac-tions for recursive pointer data structures: Improv-ing the analysis and the transformation of imperativeprograms. In SIGPLAN Conference on ProgrammingLanguages Design and Implementation, pages 249{260,June 1992.[HPR89] S. Horwitz, P. Pfei�er, and T. Reps. Dependence anal-ysis for pointer variables. In SIGPLAN Conference onProgramming Languages Design and Implementation,pages 28{40, 1989.[JM81] N.D. Jones and S.S. Muchnick. Flow analysis and opti-mization of Lisp-like structures. In S.S. Muchnick andN.D. Jones, editors, Program Flow Analysis: Theoryand Applications, chapter 4, pages 102{131. Prentice-Hall, 1981.[JM82] N.D. Jones and S.S. Muchnick. A
exible approach tointerprocedural data
ow analysis and programs withrecursive data structures. In ACM Symposium on Prin-ciples of Programming Languages, pages 66{74, 1982.[Lan92] W. Landi. Undecidability of static analysis. ACM Let-ters on Programming Languages and Systems, 1(4),1992.[Lar89] J.R. Larus. Restructuring Symbolic Programs for Con-current Execution on Multiprocessors. PhD thesis, Uni-versity of California, 1989.[LH88] J.R. Larus and P.N. Hil�nger. Detecting con
icts be-tween structure accesses. In SIGPLAN Conference onProgramming Languages Design and Implementation,pages 21{34, 1988.[LR91] W. Landi and B.G. Ryder. Pointer induced aliasing: Aproblem classi�cation. In ACM Symposium on Princi-ples of Programming Languages, pages 93{103, 1991.[Mye81] E.W. Myers. A precise inter-procedural data
ow algo-rithm. In ACM Symposium on Principles of Program-ming Languages, pages 219{230, 1981.[PCK93] J. Plevyak, A.A. Chien, and V. Karamcheti. Anal-ysis of dynamic structures for e�cient parallel exe-cution. In U. Banerjee, D. Gelernter, A. Nicolau,and D. Padua, editors, Languages and Compilers forParallel Computing, volume 768 of Lecture Notes inComputer Science, pages 37{57, Portland, OR, August1993. Springer-Verlag.[Ram94] G. Ramalingam. The undecidability of aliasing. ACMTransactions on Programming Languages and Sys-tems, 16(5):1467{1471, 1994.

[Rey68] J.C. Reynolds. Automatic computation of data set def-initions. In Information Processing 68: Proceedingsof the IFIP Congress, pages 456{461, New York, NY,1968. North-Holland.[SP81] M. Sharir and A. Pnueli. Two approaches to interpro-cedural data
ow analysis. In S.S. Muchnick and N.D.Jones, editors, Program Flow Analysis: Theory andApplications, chapter 7, pages 189{234. Prentice-Hall,1981.[SRW95] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destructive up-dating. Technical Report TR-1276, Computer Sci-ences Department, University of Wisconsin, Madison,WI, July 1995. Available on the WWW from URLhttp://www.cs.wisc.edu/trs.html.[Str92] J. Stransky. A lattice for abstract interpretation ofdynamic (Lisp-like) structures. Information and Com-putation, 101(1):70{102, November 1992.

16

