Alias Analysis of Executable Code *

Saumya Debray

Robert Muth

Matthew Weippert

Department of Computer Science

University of Arizona
Tucson, AZ 85721, U.S.A.

{debray, muth, weippert}@cs.arizona.edu

Abstract

Recent years have seen increasing interest in systems
that reason about and manipulate executable code.
Such systems can generally benefit from information
about aliasing. Unfortunately, most existing alias
analyses are formulated in terms of high-level language
features, and are unable to cope with features, such
as pointer arithmetic, that pervade executable pro-
grams. This paper describes a simple algorithm that
can be used to obtain aliasing information for exe-
cutable code. In order to be practical, the algorithm is
careful to keep its memory requirements low, sacrific-
ing precision where necessary to achieve this goal. Ex-
perimental results indicate that it is nevertheless able
to provide a reasonable amount of information about
memory references across a variety of benchmark pro-
grams.

1 Introduction

Recent years have seen increasing interest in reason-
ing about and manipulating executable files [5, 15, 20,
25, 27, 30, 31, 33]. When working with an executable
file, we typically have information about the entire
program—including, potentially, library functions—
that is usually not available at compile time. Because
of this, code manipulation and optimization at this
level offers benefits that are difficult or impossible to
obtain using traditional compilers. As with the compi-
lation of source-level programs, code transformations
on executable code can benefit greatly from pointer
alias information. For example, inlining library rou-
tines may open up opportunities for moving invariant
load instructions out of loops, but alias information is
needed in order to identify such invariant load instruc-
tions. To obtain the full benefits of a superscalar archi-

*This work was supported in part by the Na-
tional Science Foundation under grant CCR-9502826.
Copyright 1998 ACM. To appear in the Proceedings of
the 25th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, January 1998.

tecture such as the DEC Alpha, link-time optimizers
such as Spike [5], alto [10], and OM [30] need to carry
out instruction scheduling again after link-time opti-
mizations; without pointer alias information, however,
the scheduler must be conservative in its treatment of
loads and stores, and this can limit the amount of code
reordering that is possible. As a final example, 1t may
be possible to scavenge registers at link-time, e.g., by
examining the register usage of library functions, but
the ability to use such scavenged registers effectively
is likely to be limited in the absence of pointer alias
information.

There is an extensive body of work on pointer alias
analysis of various kinds (see Section 6). In almost all
cases, these are high level analyses, carried out on rep-
resentations of source programs in terms of source lan-
guage constructs, and typically disregarding “nasty”
features such as type casts, pointer arithmetic, and
out-of-bounds array accesses. Such analyses turn out,
unfortunately, to be of limited utility at the machine
code level, because at this level all we have are the
nasty features. The contents of registers and mem-
ory words are untyped bit-strings, so the issue of type
casts is in some sense moot: everything is potentially
an address. Memory accesses typically involve some
address arithmetic to compute a base address into a
register, followed by the use of a displacement off the
base address to carry out the actual memory refer-
ence. Address arithmetic may also arise due to par-
ticular language features, e.g., the use of “tag bits” in
dynamically typed languages to indicate the type of
the value pointed at. Dereferencing operations in the
executable code for such programs will involve nontriv-
1al arithmetic involving the tag bits that is invisible—
and irrelevant—at the source level (at the level of ex-
ecutable programs, we can’t tell what source language
a particular piece of code was derived from, and differ-
ent components of a program might have been written
in different source languages, so we must be able to
deal with all such address arithmetic in a reasonable

way). If the number of arguments to a function is
large enough, some of the arguments may have to be
passed on the stack. In such a case, the arguments
passed on the stack will typically reside at the top of
the caller’s stack frame, and the callee will “reach into”
the caller’s frame to access them: this is nothing but an
out-of-bounds array reference. Finally, executable pro-
grams may include library functions, in hand-written
assembly code, that violate familiar and comfortable
source-level assumptions, e.g., that execution does not
jump out of the middle of one function and into the
middle of another (this happens, for example, in some
Fortran library routines). To illustrate some of the
problems that arise, consider the fragment of C code
shown in Figure 1, together with the corresponding as-
sembly code.! The point to note is the extensive use
of address arithmetic to access memory, even in this
very simple program fragment. For example, in order
to determine whether instructions (10) and (11) might
write to the same memory location, we need to be able
to reason about the contents of registers r16 and ri7,
which are defined through the arithmetic operations in
instructions (5) and (6). As this example illustrates,
pointer arithmetic cannot be ignored during alias anal-
ysis at the machine code level.

In this paper, we describe a low-level, flow-
sensitive, context-insensitive interprocedural pointer
alias analysis algorithm, designed and implemented in
the context of the alto link time optimizer [10], that
can handle significant pointer arithmetic and features,
such as out-of-bound references, that are ignored by
most existing alias analysis algorithms.

For simplicity in the discussion that follows, we as-
sume a more or less canonical RISC instruction set.
Memory 1s accessed only through explicit load and
store instructions, which have the form load reg,,
k(reg,) and store reg,, k(reg,), where k is a con-
stant, and have the effect of reading from, or writing
to, the location whose address is k + contents_of (reg,).
To model arithmetic we assume the instructions add
srcy, srcg, dest and mult srey, srco, dest, where
dest is a destination register and sre; and sreo are
source registers; to simplify the discussion we abuse
notation and allow either sre; or srey to be an integer
constant, denoting an immediate operand. These in-
structions compute, respectively, the sum and product
of sreq and sreq into dest (many other operations can

L The assembly code shown corresponds to that obtained us-
ing gcc -0 on a DEC Alpha workstation, with some edits to
enhance readability. On the Alpha, arguments to functions are
typically passed in registers 16 ... 21, and register 30 is used as
the stack pointer.

be expressed in terms of these, e.g., subtraction and
register-to-register moves can be modelled in terms of
addition: we do not consider these separately). In ad-
dition to these we assume the usual complement of
tests, conditional jumps, and direct and indirect un-
conditional jumps: the only effect of these instructions
is to determine the control flow graph of the program,
so we do not consider them explicitly in the context
of alias analysis. We also ignore operations on float-
ing point registers, since it seems unlikely that such
operations would be used for address computations.

2 Local Alias Analysis

A technique called instruction inspection, commonly
used in compile-time instruction schedulers, can be
used to reason about memory references within a ba-
sic block. Here, two memory reference instructions i
and i are taken to be non-conflicting if either of the
following conditions hold:

1. they use distinct offsets from the same base reg-
ister 7, and r is not redefined between i; and is;
or

2. one of the instructions uses a register known to
point to the stack and the other uses a register
known to point to the global data area.

Unfortunately, this simple approach does not work if
information about address arithmetic needs to be prop-
agated across basic block boundaries. In the next sec-
tion we describe a global analysis that can be used to

handle this.

3 Residue-Based Global Alias Analysis

3.1 The Basic Idea

An alias analysis will in general associate each register
with a set of possible addresses at each program point,
so we need to abstract sets of addresses to descriptions,

or “abstract address sets.”

These need to be easy to
compute and compactly representable, with operations
such as union, intersection, checking containment, etc.,
that are cheap enough to be practical for the analysis of
large programs. A simple way to satisfy these criteria
1s to consider only some fixed number—say, m—of the
low order bits of an address. That is, addresses are rep-
resented by their mod-k residues, where k = 2™. The
set of all mod-k residues is Zy = {0,...,k—1}. An
abstract address set can then be represented as a bit
vector of length k; since m—and, therefore, £k = 27 —is
fixed, set operations such as union, intersection, check-

Source Code Executable Code

int £()
{ add r30, -48, r30
store r26, 0(r30)
int x,
Yy
g(&y, ¥x); add r30, 16, r16
add r30, 20, ri17
bsr r26, g
}
int g(int *x, int *y)
{ add r30, -32, r30
store r26, 0(r30)
xx = 1; store 1, 0(ri16)
*y = 0; store 0, 0(r17)
}

= H H R

=+

allocate stack frame
save return address
x is at displacement 20 in f’s stack frame
y is at displacement 16 in f’s stack frame

NN N
=W o =
N e e e

rl6 := &y (5)

ri7 := &x (6)

r26 := return addr; goto g (7)

argl in r16, arg2 in ri7

allocate stack frame (8)

save return address 9)
(10)
(11)

Figure 1: A fragment of a C program and the corresponding assembly code

ing containment, etc., can be carried out in O(1) bit-
vector operations. This representation can cope with
address arithmetic, e.g., as illustrated in Figure 1, since
such arithmetic translates in a straightforward way to
mod-k arithmetic (see, for example, [17]). Finally,
since ¥ mod k # (x £ 6) mod k for 0 < § < 2™, the
representation can distinguish between addresses in-
volving distinct “small” displacements (i.e., less than
2™) from a base register.

It turns out that mod-k residues are not, by them-
selves, adequate for our purposes. The problem is that
in many cases we won’t be able to predict the actual
value of a register r (e.g., the stack pointer) at a pro-
gram point, which means we won’t be able to say any-
thing about a displacement k from r, i.e., the address
corresponding to k(r), either. To deal with this prob-
lem we extend abstract address sets to address descrip-
tors, which take an additional component that refers
to an instruction:

Definition 3.1 An address descriptoris a pair (I, M),
where [is either an instruction or one of the distin-
guished values {NONE, ANY}, and M is a set of mod-k
residues. Given an address descriptor A = (I, M), the
instruction [is said to be the defining instruction of
A, while M is called the residue set of A. g

The intuition is that given an address descriptor
(I, M), M denotes a set of mod-k residues relative to
whatever value is computed by instruction /. A value

of NONE indicates that the corresponding residue set
represents mod-k residues of absolute addresses, while
a value of ANY indicates that the address descriptor
denotes all possible addresses. More formally, suppose
that we are given an operational semantics for the in-
struction set under consideration (such a semantics is
conceptually simple, if somewhat tedious, to specify for
the simple instruction set considered here: we omit a
formal specification due to space constraints, and rely
instead on the informal description of the instructions
given at the end of Section 1). Given a program P
and an instruction [in P, let valp(]) denote the set
of values w such that, for some input to P, there is
an execution path from the entry point of P to the
instruction [that causes I to compute w into its des-
tination register (valp(I) = @ if I does not compute
a value into a register, or if control never reaches 7).
Extend this to the special values NONE and ANY as
follows: for any program P, valp(NoNE) = {0}, and
valp(ANY) is the set of all values. Then, for an analy-
sis using mod-k residues, the set of addresses denoted
by an address descriptor A = (I, M) in P—that is, the
“concretization” of A in the context of P—is:

concp((I, M)) =
{w+ik+z|wevdp(l),z € M,i>0}.

As this indicates, different values may be computed by
different executions of a particular instruction. This
implies that, for the purposes of alias analysis, it is
not enough to consider address descriptors in isolation.

This 1ssue 1s addressed 1n more detail in Section 3.3.

The relative precision of different address descrip-
tors can be characterized via the binary relation <:

Definition 3.2 An address descriptor (Is, Ms) is
more precise than a descriptor (I3, M), written
(I, Mh) € {I2, M), if and only if (i) I; = ANY or
My = Zg; or (it) My = 0; or (4ii) I, = I and
My C M. n

It is straightforward to show that < is reflexive and
transitive, i.e., a preorder. It can be extended to a
partial order in the usual way: define the relation ~
as Ay ~ Ay if and only if A7 < A, and A; < A;—it is
easy to show that this is an equivalence relation—and
consider the quotient of < with respect to ~. The set
of address descriptors forms a lattice with respect to
this partial order. In the remainder of this discussion,
we abuse notation and write < to refer to the result-
ing partial order. In particular, the equivalence class
containing (I, Zy;) for all I, as well as (ANY, M) for all
M, denotes a total lack of information, and is written
as —; the equivalence class containing (7,) for all 7,
denotes the empty set of addresses and is written as T.
Our analysis associates an address descriptor with each
register at each program point of interest.? If a regis-
ter r has an associated address descriptor (I, M) at a
program point, we will sometimes abuse terminology
and refer to instruction / as the defining instruction
for r at that point.

3.2 The Analysis Algorithm
3.2.1 Effects of Individual Instructions

As mentioned earlier; the defining instruction compo-
nent of an address descriptor allows us to refer to mod-
k residues relative to “whatever value is computed by
the defining instruction.” When examining an instruc-
tion I with destination register r, if we can’t say any-
thing about the value of r after instruction I, then
instead of setting the address descriptor for r to —, we
use [as the defining instruction for r and associate
the address descriptor (I,{0}) with r at the point im-
mediately after I. To simplify the discussion, we as-
sume that an immediate operand c¢ yields an address

2Strictly speaking, the analysis should map each register at
each program point to a set of address descriptors. For prag-
matic reasons—see Section 3.2.2 for details—we use a widening
operation [8] to ensure that at each program point, each register
is mapped to a singleton set of address descriptors. For sim-
plicity, we do not distinguish between such a set and the single
address descriptor it contains.

descriptor (NONE, {¢ mod k}) in an analysis based on
mod-k residues. Individual instructions are analyzed
as shown in Figure 2. The reasoning behind these op-
erations is as follows:

— For load instructions, our analysis currently
doesn’t keep track of the contents of memory lo-
cations, except for read-only sections of the text
and data segments.® Otherwise, we can say noth-
ing about the contents of r after the load in-
struction, so the resulting address descriptor is

(1,{0}).

— A store instruction does not affect address de-
scriptors since it does not affect the contents of
any register.

— For an instruction add sre,, srcy, dest, Fig-
ure 2 shows two cases. The correctness of the
first case follows straightforwardly from the rules
for mod-k arithmetic [17]; the second case is
obviously safe, but merits some discussion: if
Ay =~ —, Ay = —, or Iy # Ip, it’s easy to
see that we can’t say anything about the re-
sult of the operation; if I, = I, = Iy for some
Iy, 1t’s tempting to think that the resulting ad-
dress descriptor could be given as (Iy, M’), where
M = {(xqg +2p) mod k | x4 € My, 2, € My},
but this is not the case, since M’ doesn’t account
for the fact that the values being added have, as
components, two (possibly different) values from
valp (Ip).

— For an instruction mult src,, srcy, dest, Fig-
ure 2 shows three cases. The correctness of the
first case follows easily from the rules for mod-&
arithmetic; the second case can be thought of as
“widening” Ap to (NONE, Z), which is obviously
safe, and then applying the first case; the rea-
soning for the third case is analogous to that for
the add instruction above.

In typical RISC code, the most commonly encoun-
tered address expression by far involves a fixed dis-
placement off a base register, which corresponds to the
add instruction discussed above. As such it is espe-
cially important that this case be handled efficiently.
Suppose that the instruction under consideration is
add reg,, ¢, reg,. It turns out that given an ad-
dress descriptor (I, M) for reg,, with M represented

3Our implementation uses the contents of these read-only sec-
tions to obtain global addresses: these include global variables as
well as addresses of jump tables and functions called indirectly
through function pointers.

Input: An instruction [.

Method: case I of

load r, addr :

A"~ — and is A’ otherwise.

dest after I is taken to be (I, {0}).

is (I,{0}) if A’ ~ — and is A’ otherwise.

dest after instruction I is (I,{0}).

esac

Output: An address descriptor for the destination register of 7.

If addr corresponds to a read-only memory location with contents val, then the address
descriptor for r is (NONE, {val mod k}), otherwise it is (7, {0}).

store r, addr : this instruction does not have any effect on any address descriptors.

add srcg, srcy, dest : Let the address descriptors for src, and sre, immediately before instruction I be
Ag = (Ia, My) and Ay = (I, Mp) respectively. There are two possibilities:

(1) If Ay #£ —, Ay # —, and I, = NONE (the situation where I, = NONE is symmetric), let A’ = (I, M'),
where M’ = {(#q + 2p) mod k | x4 € My, 2, € Mp}. The address descriptor for dest is (I,{0}) if

(2) Otherwise, we can’t say anything about the result of this operation, so the address descriptor for

mult src,, srcp, dest : Let the address descriptors for sre, and srep, immediately before instruction I be
Ag = (1o, My) and Ay = (I, Mp) respectively. There are three possibilities:

(1) If Aq 2 —, Ay # —, and both I, and I, are NONE, let M, = {(zq X) mod k | x4 € My, xp € My},
and A" = (NONE, M.). The address descriptor for dest is (I,{0}) if A’ ~ — and is A’ otherwise.

(2) Otherwise, if A, % —, Ay # —, and I, = NONE (the case where [, = NONE is symmetric), let
Mo = {(xq x xp) mod k | 4 € Xq, 25 € Zi }, and A" = (NONE, M.). The address descriptor for dest

(3) Otherwise, we can’t say much about the result of the multiplication, so the address descriptor for

Figure 2: Analysis of individual instructions

as a bit vector, the bit vector M’ in the descriptor
(I, M’} for reg, can be obtained simply by “rotating
up” the bit-vector for M by ¢ bits, and this i1s easy
to implement efficiently. As an example, suppose that
M = {1,5,6} in a mod-8 residue analysis, and ¢ = 3,
then M’ = {4,8,9} mod 8 = {4,0,1}. If we represent
these sets as bit vectors with the smallest element on
the right, then X = 01100010; rotating up (i.e., to the
left) by 3 bits gives us the vector 0001 0011, which is
precisely the bit vector for M’.

3.2.2 Propagating Address Descriptors

Conceptually, if we consider all possible execution
paths through a program, each register at each pro-
gram point will correspond to a set of values; ab-
stracting from this, one would expect an analysis to
map each register to a set of address descriptors at

each program point. Given the handling of individual
instructions as described in the previous section, the
analysis is now a conceptually straightforward forward
dataflow analysis where we compute the meet-over-all-
paths solution,* with union as the meet operator [1].

It turns out that if each register, at each program
point, is mapped to a set of address descriptors, the
memory requirements for the analysis can become ex-
cessive for large programs. This is due partly because
fully linked executables tend to be considerably larger
than source language modules, and partly because rea-
soning about address arithmetic is usually less precise
than, say, reasoning about aliasing at the source level.
As a pragmatic measure, therefore, a widening opera-

4Since our current implementation is not context-sensitive in
its treatment of inter-procedural information flow, a meet-over-
all-paths solution suffices; a context-sensitive treatment would
have required a meet-over-all-valid-paths solution.

v

add r30,-272,r30 | (1)

[18 instrs]

{

B1

B2

[42 instrs]

B3 B4

[18 instrs] [104 instrs]

B5

[2 instrs]

B8 [add 130,136,121 | @

[8 instrs]

[23 instrs]

store ..., 80(r30)

add r21,32,r21 |3 |load ..., 0(r21) ()
add r21,32,r21 |(6)

\y

B10

B8

[56 instrs]

[6 instrs]

Bi1

[10 instrs]

Figure 3: Flowgraph for Example 3.1 [Program: ijpeg; function: jpeg_idct_ifast()]

tion [8] is used to ensure that at each program point,
each register is mapped to a singleton set of address
descriptors—or, equivalently, a single address descrip-
tor. As mentioned in Section 3.1, the set of address
descriptors forms a lattice with respect to the precision
ordering <. The widening operation ¥/ is defined to be
simply the meet operation with respect to <. In effect,
what this does is that if a program point B has two
predecessors By and By, such that the address descrip-
tors for a register r at By and By are Ag = (I, Mp)
and A; = (I1, My) respectively, where neither Ag nor
A; are T, and Iy # [1, then the address descriptor for
rat Bis Ag sy A1 = —.

While this widening results in “less accurate” infor-
mation in some sense—this is reflected in the experi-
mental results on the precision of our analysis shown in
Table 1—it doesn’t really change the alias relationships
that are determined. To see this, consider a basic block
B with two precedessors By and B;. Suppose that we
have a register r, whose address descriptors at the exit
from By and By are given by (12, M2) and (I}, M}) re-
spectively, and we want to determine whether this is
possibly aliased to a register r,, with address descriptor
(Iy, Mp), at the entry to B. If the defining instructions
from two address descriptors are different, we can’t say
much about any relationship that may hold between
them. This means that if 10 # Il it will necessarily
be the case that I, will be different from at least one
of I? and I}, leading us to conclude that we cannot
rule out aliasing between r, and r: this is the same

conclusion as that from the result of the widening op-
eration. Conversely, if I? = I1 = I, then whether or
not r, and 7, are possible aliases depends on whether
or not M, has a non-empty intersection with MJUM_}:
again, this is the same as with the widening operation.

The resulting analysis is reasonably memory-
efficient: for each basic block we need two address de-
scriptors per register, one for the IN set, at the entry to
the block, and one for the oUT set, at the exit. Thus,
for a given choice of k, the analysis requires 2RN (k+w)
bits of memory for a program with N basic blocks on
a machine with R registers, where w is the number of
bits per machine word.?

3.3 Reasoning about Alias Relationships

Given two address descriptors A1 = {(I;, My) and
Az = (Iz, M) at two points in a program, under what
conditions can we conclude that they definitely do not
refer to the same address? If /1 # I we cannot say
much about any relationship that may hold between
A1 and A,, and so have to assume that they may
refer to the same location. However, 1t is not suffi-
cient to require that Iy = Iy and M; N My =), since
the value computed by a particular instruction may
be different when that instruction is executed at dif-
ferent times. The following proposition gives a simple
sufficient condition for determining that two address

5This can be reduced to RN (k+w) bits, as in our implemen-
tation, by storing only OUT sets, since the IN set of a block can
be computed fairly easily from the OUT sets of its predecessors.

expressions denote disjoint sets of addresses:

Proposition 3.1 Address descriptors A1 = (I, My)
at program point p1 and Ay = (I, M) at program point
pa denote disjoint sets of addresses if (i) I dominates
both py1 and py; (it) either py dominates pa, or pa dom-
inates p1; and (iii) My N Ma = 0.

Proof Conditions (i) and (i¢) ensure that both the
program points p; and ps see the same value computed
by instruction I. Condition (#if) then ensures that
relative to this value, the set of addresses referred to
at pp 1s disjoint from that referred to at p,. O

Example 3.1 Asan example of the application of this
analysis to a real program, Figure 3 shows the flow
graph of the function jpeg_-idct_ifast(), which im-
plements a fast integer inverse discrete cosine trans-
form, from the SPEC-95 benchmark program ijpeg.
To reduce clutter, only a few relevant instructions are
shown explicitly: the number in brackets at the lower
left hand corner of each basic block indicates the total
number of instructions in that basic block. Register
r30 is the stack pointer, while r21 is used to walk
through a local array of structures with a stride of 32
bytes.

Using the current implementation of our analysis,
which uses mod-64 residues, the address descriptor for
register r21 immediately after instruction (2) in block
B6 is computed as ((1),{8}), where (1) is the instruc-
tion in block B1 that defines the value of r30. Each
iteration of the loop B7-B8-B9-B10 increments r21
by 32, so the address descriptor for r21 on entry to
block BY is ((1),{8,40}); however, register r30 is not
changed in the loop, so its address descriptor in B9 is
((1),{0}). Since the requirements of Proposition 3.1
are trivially satisfied within block B9, we can conclude
from this that the store instruction (4), which assigns
to location 80(r30), refers to a different location than
instruction (5), which accesses location 0(x21). O

4 Alias Analysis in alto

Alto (“Another Link-Time Optimizer”), a prototype
link-time optimizer we have implemented [10], uses a
combination of an extended version of the local analy-
sis described in Section 2, and the global analysis de-
scribed in Section 3, to reason about aliases in exe-
cutable code: we conclude that a pair of memory ref-
erences will not access overlapping sets of locations if
either analysis is able to determine that this is so. We

first carry out context-insensitive interprocedural con-
stant propagation to identify references to global ad-
dresses, followed by the global alias analysis described
earlier. The extended local analysis proceeds as fol-
lows: two memory reference instructions i; and i, do
not conflict if one of the following holds:

1. one of the instructions uses a register known to
point to the stack and the other uses a register
known to point to the global data area (note that
because of the constant propagation carried out
earlier; in this case #; and ¢» need not belong to
the same basic block); or

2. 41 and 4y, which use address expressions ki(r1)
and ks(r2) respectively, are both in the same ba-
sic block B; and there are two (possibly empty)
chains of instructions whose effects are to com-
pute the value ¢1 + contents_of (rg) into register
r1 and ca+ contents_of (rg) into ra, for some reg-
ister g, such that either both chains use the same
definition of g in the block B, or neither use any
definition of rg in B; and ¢1 + k1 # ¢a + ka.

5 Experimental Results

We evaluated our analysis on the SPEC-95 bench-
marks as well as some non-SPEC applications: agrep,
a pattern matching utility [37]; appbt and appsp, com-
putational fluid dynamics codes originally from NASS;
barnes-hut, a simulation program to compute n-body
gravitational interactions [2]; latex, a popular docu-
ment formatting tool; and pseudoknot, a numerical
benchmark that finds the 3-dimensional structure of
a nucleic acid molecule. The input programs were
compiled with the DEC C compiler V5.2-023 invoked
as cc -04 -Wl,-r -W1l,-d -Wl,-z —-non_shared (for
the C programs), and the DEC Fortran compiler ver-
sion 3.8 invoked as £77 -04 -Wl,-r -Wl,-d -Wl,-z
-non_shared (for the Fortran programs), resulting in
statically linked executables. The measurements re-
ported here were carried out after first removing dead
and unreachable code from these executables, as well
as trivial loads, noops inserted for scheduling and
alignment purposes, and redundant loads of the gp reg-
ister, using alto [10]. The timings were obtained on a
DEC Alpha workstation, with a 300 MHz Alpha 21164
processor with 512 Mbytes of main memory, running
Digital Unix 4.0. Table 1 shows the precision of the
analysis, while Table 2 shows its the time and space
requirements.

6We used the sequential C versions available from
ftp.cs.wisc.edu:/wwt/Misc/NAS.

| PRoGRAM | TOTAL | ONE FEwW ToraL KNOWN UNKNOWN |
applu 38973 | 11083 28.44% 5075 13.02% 16158 41.46% 22814 58.54%
apsi 46641 12344 26.47% 4930 10.57% 17274 37.04% 29366 62.96%
compress 6375 2070 32.47% 235 3.69% 2305 36.16% 4070 63.84%
fpppp 39777 | 12431 31.25% 3726 9.37% 16157 40.62% 23619 59.38%
gcc 137389 | 44021 32.04% 6698 4.88% 50719 36.92% 86669 63.08%
go 31596 7472 23.65% 5310 [16.81% 12782 40.45% 18814 59.55%
hydro2d 37855 9668 25.54% 4711 [12.45% 14379 37.98% 23475 62.01%
ijpeg 22179 8473 38.20% 1685 7.60% 10158 45.80% 12021 54.20%
i 12466 3919 31.44% 307 2.46% 4226 33.90% 8240 66.10%
m&8ksim 17516 5271 30.09% 651 3.72% 5922 33.81% 11594 66.19%
mgrid 35696 9150 25.63% 3840 [10.76% 12990 36.39% 22705 63.61%
perl 41039 | 14777 36.01% 1054 [2.57% 15831 38.57% 25208 61.42%
su2cor 38052 10434 27.42% 4515 [11.87% 14949 39.29% 23103 60.71%
swim 34187 | 0454 [27.65%] | 4035 [11.80% | | 13489 [39.46% | | 20698 [60.54%]
tomcatv 33829 9356 27.66% 3905 11.54% 13261 39.20% 20568 60.80%
turb3d 37930 9857 25.99% 4187 11.04% 14044 37.03% 23885 62.97%
vortex 59021 19310 32.72% 1295 [2.19% 20605 34.91% 38413 65.08%
waveb 44047 | 12113 27.50% 7553 [17.15% 19666 44.65% 24381 55.35%
(a) SPEC-95 benchmarks
| PROGRAM | TOTAL | ONE | FEwW | ToraL KNowN | UNKNOWN |
agrep 11104 3581 32.25% 865 [7.79% 4446 40.04% 6652 59.91%
appbt 14582 5353 36.71% 3280 22.49% 8633 59.20% 5948 40.79%
appsp 10575 3520 33.29% 1886 17.84% 5406 51.12% 5169 48.88%
barnes-hut 9874 2215 22.43% 218 2.21% 2433 24.64% 7441 75.36%
latex 28765 8673 30.15% 2008 6.98% 10681 37.13% 18083 62.87%
pseudoknot 25196 | 14738 58.49% 307 1.22% 15045 59.71% 10151 40.29%

(b) Non-SPEC applications

Key: ToTaL : Total no. of load/store instructions [static counts]

ONE : No. of load/store instructions whose mod-k residue set has cardinality 1.

FEW : No. of load/store instructions whose mod-k residue set has cardinality n, 1 < n < k.

ONE+FEW.
UNkNOWN : ToTAL — ToTAL KNOWN.

ToTtaL KNOWN :

Table 1: Precision of Analysis (load/store instructions)

5.1 Precision

Traditionally, the precision of alias analysis algorithms
is often presented in terms of the average size of points-
to sets or alias sets. In our context, however, there
are no points-to or alias sets: a more meaningful mea-
sure, perhaps, is the (relative) number of memory
references—i.e., load and store instructions—for which
the analysis is able to provide information that would
not have been available otherwise. This information is
presented in Table 1. The numbers presented corre-
spond to mod-k residues with k& = 64 (this choice was
determined in part by the fact that the set of mod-k
residues for this choice of k corresponds to a bit vector
that fits exactly in one 64-bit machine word), combined
with the local analysis described in Section 2.

It can be seen that in the programs tested, the anal-
ysis is able to provide information for roughly 30%—
60% of the memory reference instructions. Prelimi-
nary investigations indicate that much of the loss in
precision occurs due to three reasons. First, since we
don’t keep track of the contents of memory, informa-
tion about a register is lost if it is saved to memory and
subsequently restored. Second, the widening operation
described in Section 3.2.2, which causes information to
be lost if a register can have different defining instruc-
tions at different predecessors of a join point in the
control flow graph. The third reason, which is related
to the second, is that since our analysis 1s context-
insensitive at the inter-procedural level, pointer argu-
ments to a procedure with multiple call sites will be-
come widened to —.

PrOGRAM | Basic BLOCKS | INSTRUCTIONS | ANALYSIS TIME (sec) | MEMORY USED (Mbytes) |
applu 24939 117247 20.28 9.13
apsi 27334 135270 21.55 10.01
compress 4425 18489 2.93 1.62
fPPPP 24778 118183 18.68 9.07
gcc 79037 321986 64.65 28.94
go 15734 74361 12.48 5.76
hydro2d 26048 115957 20.24 9.54
ijpeg 10928 57447 8.96 4.00
i 7856 31572 4.51 2.88
ma88ksim 10012 44489 5.48 3.67
mgrid 25025 109260 18.98 9.16
perl 22270 99789 13.86 8.16
suZcor 24827 115547 19.21 9.09
swim 23491 104674 17.66 8.60
tomcatv 23264 103406 17.73 8.52
turb3d 25687 114888 20.51 9.41
vortex 28240 129092 11.26 10.34
waveb 26309 132299 21.50 9.63
(a) SPEC-95 benchmarks
ProGrRAM | Basic BLOCKs | INSTRUCTIONS | ANALYSIS TIME (sec) | MEMORY USED (Mbytes) |
agrep 6744 32450 5.65 2.47
appbt 5935 39981 4.96 2.17
appsp 4427 27289 3.48 1.62
barnes-hut 7551 29792 5.02 2.76
latex 14350 66011 8.56 5.26
pseudoknot 4090 37078 2.38 1.50
(b) Non-SPEC applications
Table 2: Cost of Analysis
5.2 Cost Because of the widening operation described in Sec-

Table 2 gives the time and space costs of our analy-
sis. Columns 2 and 3 give the size of each benchmark,
measured, respectively, in the total number of basic
blocks and instructions in the program. Column 4 then
gives the total analysis time in seconds, while column
5 gives the total memory requirements of the analy-
sis in Mbytes. The analysis times range from about 2
seconds to 20 seconds, with the gcc program an out-
lier with a total analysis time of a little over a minute.
These numbers are somewhat higher than we would
like, but the reason for this is that every instruction
within a basic block is examined whenever that basic
block is processed. As Figure 4 indicates, the time
taken to analyze a program in practice varies essen-
tially linearly as the number of instructions in the pro-
gram. The memory requirement of the analysis typi-
cally varies from about 1.5 Mbytes to 10 Mbytes, with
gcc having a high requirement of about 29 Mbytes.

tion 3.2.2, the memory requirements of the analysis
are linear in the number of basic blocks in the input
program: we feel that this is essential if the analysis is
to be usable for large programs.

5.3 Utility

At this point, the only optimization for which we have
had the time to evaluate the utility of the alias analysis
described here involves reducing the number of load
operations executed: by using scavenged registers to
eliminate some unnecessary load instructions, moving
loop-invariant load instructions—typically arising due
to inlining—out of loops, and via partial redundancy
elimination. Preliminary results are shown in Table
3, which gives dynamic counts of the number of load
instructions for some of our benchmarks. The column
NoaLIAS gives the number of load operations executed
in the absence of any alias analysis at all, i.e., where
any pair of references to memory were considered to

70

60

50 4

401

30+

204

Analysis Time (secs)

10 1 o

50 100

150

200 250 300

Program Size (no. of instructions x 1000)

Figure 4: Variation of analysis time with input size

ProOGRAM LoAD OPERATIONS EXECUTED (x10°) IMPROVEMENT (%)
NoaLias | INSPECT | ALTO INSPECT | ALTO
appbt 210.75 208.44 196.70 1.10 6.67
appsp 105.96 105.23 104.12 0.69 1.73
barnes-hut 575.72 575.69 563.53 0.00 2.12
compress 11343.45 11343.45 11103.02 0.00 2.12
fpppp 42145.26 42053.67 40168.10 0.22 4.70
ijpeg 6968.07 6965.63 6967.98 0.04 0.00
L 16812.97 16790.96 16482.99 0.14 1.97
m88ksim 14409.69 14409.69 14377.77 0.00 0.23
perl 6645.09 6643.39 6581.56 0.03 0.89
pseudoknot 93.82 93.82 91.87 0.00 2.09
waveb 7540.10 7540.10 7475.55 0.00 0.86

Table 3: Utility of Analysis: Deletion

potentially access the same locations; the INSPECT
column gives the number of load operations when we
used simple inspection, as described in Section 2, for
intra-block load optimizations; and the ALTO column
gives the number of load operations executed when
programs were optimized using our analyses to disam-
biguate memory references. Since all other optimiza-
tions, such as deletion of dead /unreachable code, inlin-
ing, etc., are carried out in the same way by all three
versions considered, with the only difference arising
out of the way in which potential conflicts in memory
accesses were identified, NOALIAS forms a fair basis
for comparisons. The last two columns give the per-
centage reduction in the number of load operations ob-
tained using local inspection, measured as (NOALIAS
— INsPECT)/NoALIAS, and global analysis, measured
as (NOALIAS — ALTO)/NOALIAS, respectively.

It can be seen, from Table 3, that improvements
due to purely local alias analysis are small to nonex-
istent. This does not come as a surprise, since at op-
timization level —04, global register allocation has al-

10

of unnecessary load instructions

ready been carried out by the compiler, leaving few
loads available for easy removal. Global analysis gives
better results, including 4.7% of the total number of
load instructions removed for the fpppp benchmark,
and 6.7% for appbt. The reason for the improvement
for fpppp 1s that it contains a very heavily executed
basic block that is so large that the register pressure
forces the compiler to spill a number of variables to
memory; alto is able to scavenge some registers at
link time and use them to retain some of the spilled
variables in registers, thereby allowing the spill code to
be deleted. The overall percentage improvements are,
nevertheless, relatively modest; this is consistent with
the results of Cooper and Lu [7]. To a great extent,
the reasons for this are twofold: first, the compiler
has already done a good job of removing memory op-
erations via global register allocation; and second, in
many cases, a lack of free registers prevented us from
optimizing away load operations that our alias analysis
had inferred as optimizable. To some extent, impreci-
sion in our analysis, arising from the sources discussed
in Section 5.1, also affected the number of memory

operations deemed suitable for optimization.

6 Related Work

While a number of systems have been described for
link-time code optimization [5, 15, 16, 27, 30, 31, 33],
to the best of our knowledge, any alias analysis carried
out by these systems is limited to fairly simple local
analyses.

There is an extensive body of work on pointer alias
analysis of various kinds (see, for example, [3, 4, 6, 9,
11,12, 13, 14, 18, 19, 21, 22, 23, 24, 26, 28, 29, 32, 34,
35]). The work most closely related to ours is that of
Wilson and Lam [35], who describe a low-level pointer
alias analysis for C programs. Their work attempts
to deal with “nasty” features of real programs and
can handle simple pointer increments and decrements,
but is unable to cope with the more complex address
arithmetic common in executable code (see Example
3.1). Also, it restricts itself to C language features,
and so cannot handle arithmetic arising from idiosyn-
cracies of other languages, e.g., manipulation of point-
ers with “tag bits,” that may be encountered in exe-
cutable code. Their algorithm is context-sensitive at
the inter-procedural level, however, while our current
implementation is context-insensitive (conceptually, it
would not be too difficult to obtain a context-sensitive
version of our algorithm, but we have not had time
to implement this yet). The remaining analyses cited
are all high level analyses that typically disregard type
casts, pointer arithmetic, out-of-bounds array accesses,
etc. As argued earlier, such analyses are of limited util-
ity at the machine code level.

Also related 1s the work on dependence analysis
in the scientific computing literature (see, for exam-
ple, [36, 38]). While the goals of this work are con-
ceptually similar to ours—namely, disambiguating ar-
ray references whose indices can involve arithmetic
expressions—the algorithms used for dependence anal-
ysis are very different from that described here. Since
dependence analysis is typically formulated as a source
level intra-procedural analysis, the analysis problems
tend to be relatively small in size. Because of this, de-
pendence analyses are able to use relatively more so-
phisticated, but also more expensive, algorithms than
ours. We do not know of any attempts to apply such
algorithms for whole-program analysis, and it is not
obvious to us that the algorithms involved would scale
up to problems of this size.

11

7 Conclusions

Recent years have seen increasing interest in reasoning
about and manipulating executable files. Such manip-
ulations can benefit greatly from information about
aliasing. Unfortunately, there is a fundamental mis-
match between the features present in executable pro-
grams and the features handled by existing pointer
alias analyses: such analyses are typically formulated
in terms of source-level constructs, and do not handle
features such as pointer arithmetic and out-of-bound
array references, whereas these are precisely the fea-
tures encountered in executable programs. This pa-
per describes a simple algorithm that can handle these
features, and which can be used for alias analysis of
executable programs. In order to be practical, the al-
gorithm is careful to keep its memory requirements
low, sacrificing precision where necessary to achieve
this goal. Experimental results indicate that it is nev-
ertheless able to provide nontrivial information about
roughly 30%—60% of the memory references across a
variety of benchmark programs.

Acknowledgements

Comments from the anonymous reviewers helped im-
prove the paper significantly.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compil-
ers — Principles, Techniques and Tools, Addison-

Wesley, 1986.

J. E. Barnes and P. Hut, “A Hierarchical
O(N log N) Force Calculation Algorithm”, Na-
ture, 324, 1986.

D. R. Chase, M. Wegman, and F. K. Zadeck,
“Analysis of Pointers and Structures”, Proc. SIG-
PLAN 90 Conference on Programming Language

Design and Implementation, June 1990, pp. 296—
310.

J.-D. Choi, M. Burke, and P. Carini, “Efficient
Flow-Sensitive Interprocedural Computation of
Pointer-Induced Aliases and Side Effects”, Proc.
20th ACM Symposium on Principles of Program-
ming Languages, Jan. 1993, pp. 232-245.

R. Cohn, D. Goodwin, P. G. Lowney, and N.
Rubin, “Spike: An Optimizer for Alpha/NT Ex-
ecutables” | Proc. USENIX Windows NT Work-
shop, Aug. 1997.

[6]

[10]

[13]

K. D. Cooper and K. Kennedy, “Fast Interpro-
cedural Alias Analysis”, Proc. 16th ACM Sym-
postum on Principles of Programming Languages,

Jan. 1989, pp. 49-59.

K. D. Cooper and J. Lu, “Register Promotion in
C Programs”, Proc. SIGPLAN ’97 Conference on
Programming Language Design and Implementa-

tion, June 1997, pp. 308-319.

P. Cousot and R. Cousot, “Abstract Interpreta-
tion: A Unified Lattice Model for Static Analysis
of Programs by Construction or Apporoximation
of Fixpoints”, Proc. Fourth ACM Symposium on
Principles of Programming Languages, 1977, pp.
238-252.

D. Coutant, “Retargetable High-Level Alias Anal-
ysis”, Proc. 13th ACM Symposium on Principles

of Programming Languages, Jan. 1986, pp. 110—
118.

K. De Bosschere and S. K. Debray, “alto : A
Link-Time Optimizer for the DEC Alpha”, Tech-
nical Report 96-15, Dept. of Computer Science,
The University of Arizona, June 1996.

A. Deutsch, “On determining lifetime and alias-
ing of dynamically allocated data in higher-order
functional specifications”, Proc. 17th ACm Sym-
postum on Principles of Programming Languages,

Jan. 1990, pp. 157-168.

A. Deutsch, “Interprocedural May-Alias Analysis
for Pointers: Beyond k-limiting”, Proc. SIGPLAN
’94 Conference on Programming Language Design
and Implementation, June 1994, pp. 230-241.

A. Diwan, K. S. McKinley and J. E. B.
Moss, “Type-Based Alias Analysis”, Manuscript,
Dept. of Computer Science, University of Mas-
sachusetts, Ambherst, 1996.

M. Emami,

R. Ghiya and L. J. Hendren,

“Context-Sensitive Interprocedural Points-to
Analysis in the Presence of Function Pointers”,
Proc. SIGPLAN 94 Conference on Programming
Language Design and Implementation, June 1994,

pp- 242-256.

M. F. Fernandez, “Simple and Effective Link-
Time Optimization of Modula-3 Programs”, Proc.
SIGPLAN 95 Conference on Programming Lan-
guage Design and Implementation, June 1995,
pp- 103-115.

12

[16]

[17]

[18]

[19]

[20]

[23]

D. W. Goodwin, “Interprocedural Dataflow Anal-
ysis in an Executable Optimizer”, Proc. SIG-
PLAN °97 Conference on Programming Language

Design and Implementation, June 1997, pp. 122-
133.

R. L. Graham, D. E. Knuth, and O. Patashnik,
Concrete Mathematics, Addison-Wesley, 1989.

S. Horwitz, P. Pfeiffer, and T. Reps, “Dependence
Analysis for Pointer Variables”, Proc. SIGPLAN
’89 Conference on Programming Language Design
and Implementation, June 1989, pp. 28-40.

J. Hummel, L. J. Hendren, and A. Nicolau,
“A General Data Dependence Test for Dynamic,
Pointer-Based Data Structures”, Proc. SIGPLAN
’94 Conference on Programming Language Design
and Implementation, June 1994, pp. 218-229.

M. S. Johnson and T. C. Miller, “Effectiveness of
a Machine-Level Global Optimizer”, Proc. SIG-

PLAN ’86 Symposium on Compiler Construction,
June 1986, pp. 99-108.

N. D. Jones and S. S. Muchnick, “Flow analysis
and optimization of LISP-like structures”, in Pro-
gram Flow Analysis, eds. S. S. Muchnick and N.
D. Jones, Prentice Hall, 1981, pp. 102-131.

N. D. Jones and S. S. Muchnick, “A flexible ap-
proach to interprocedural data flow analysis and
programs with recursive data structures”, Proc.
9th ACM Symposium on Principles of Program-
ming Languages, Jan. 1982, pp. 66-74

W. Landi and B. G. Ryder, “Pointer-induced
Aliasing: A Problem Classification”, Proc. 18th

ACM Symposium on Principles of Programming
Languages, Jan. 1991, pp. 93-103.

W. Landi and B. G. Ryder, “A Safe Approximate
Algorithm for Interprocedural Pointer Aliasing”,
Proc. SIGPLAN 92 Conference on Programming

Language Design and Implementation, June 1992,
pp- 235-248.

J. R. Larus and E. Schnarr, “EEL: Machine-
independent Executable Editing”, Proc. SIG-
PLAN 95 Conference on Programming Language

Design and Implementation, June 1995, pp. 291-
300.

J. R. Larus and P. N. Hilfinger, “Detecting Con-
flicts Between Structure Accesses”, Proc. SIG-
PLAN ’88 Conference on Programming Language

[27]

[28]

[31]

[35]

Design and Implementation, June 1988, pp. 21—
34.

T. Romer, G. Voelker, D. Lee, A. Wolman,
W. Wong, H. Levy, B. N. Bershad, and J.
B. Chen, “Instrumentation and Optimization of
Win32/Intel Executables”, 1997 USENIX Win-
dows NT Workshop (to appear).

E. Ruf, “Context-Insensitive Alias Analysis Re-
considered”, Proc. SIGPLAN '95 Conference on

Programming Language Design and Implementa-
tion, June 1995, pp. 13-22.

M. Shapiro and S. Horwitz, “Fast and Accurate
Flow-Insensitive Points-To Analysis”, Proc. 24th.
ACM Symposium on Principles of Programming
Languages, Jan. 1997, pp. 1-14.

A. Srivastava and D. W. Wall, “A Practical
System for Intermodule Code Optimization at
Link-Time” | Journal of Programming Languages,

pp- 1-18, March 1993.

A. Stivastava and D. W. Wall, “Link-time Opti-
mization of Address Calculation on a 64-bit Ar-
chitecture”, Proc. SIGPLAN ’94 Conference Pro-
gramming Language Design and Implementation,

June 1994, pp. 49-60.

B. Steensgaard, “Points-to Analysis in Almost
Linear Time”, Proc. 23th. ACM Symposium on
Principles of Programming Languages, Jan. 1996,
pp- 32-41

D. W. Wall, “Global Register Allocation at Link
Time”, Proc. SIGPLAN ’86 Symposium on Com-
piler Construction, July 1986, pp. 264-275.

W. E. Weihl,| “Interprocedural data flow analysis
in the presence of pointers, procedure variables,
and label variables”, Proc. ACM Symposium on
Principles of Programming Languages, Jan. 1980,
pp- 83-94.

R. P. Wilson and M. S. Lam, “Efficient Context-
Sensitive Pointer Analysis for C Programs”, Proc.
SIGPLAN 95 Conference on Programming Lan-
guage Design and Implementation, June 1995,
pp. 1-12.

M. Wolfe, Optimizing Supercompilers for Super-
computers, MIT Press, Cambridge, Mass., 1989.

S. Wu and U. Manber, “Agrep — A Fast Ap-
proximate Pattern-Matching Tool” | Useniz Win-
ter 1992 Technical Conference;, San Francisco,

Jan. 1992, pp. 153-162.

13

[38] H. Zima and B. Chapman, Supercompilers for

Parallel and Vector Computers, ACM Press, New
York, 1991.

