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1 KKL Theorem

In this lecture we return to the study of influence in Boolean functions.

1.1 Background

We consider Boolean functions f : {−1, 1}n → {−1, 1}. Recall from previous lectures that the
influence of the i-th variable on function f is defined as

Ii(f) = Pr
x∼{−1,1}n

[f(x) ̸= f(x⊕i)] = ∥Dif∥22

where x⊕i represents the input x with the i-th bit flipped, and Dif is the discrete derivative in
the i-th direction.

Dif(x) =
f(xi→1)− f(xi→−1)

2

We define the total influence of a function is the sum of the influences of all variables,

I(f) =
n∑

i=1

Ii(f)

1.2 Maximum Influence

An important question we have is: what can we say about the maximum influence of any variable
in a function? What is a good lower bound for maxi{Ii(f)}?

In this lecture we focus on balanced functions (they are functions where Pr[f(x) = 1] =
Pr[f(x) = −1] = 1

2 when x is chosen uniformly at random).

From previous lectures (lecture 5), we established the Poincaré Inequality,

I(f) ≥ Var(f)

and for balanced Boolean functions, Var(f) = 1, so we have I(f) = Ω(1). This gives us a simple
lower bound on the maximum influence

max
i

{Ii(f)} ≥ I(f)

n
= Ω

(
1

n

)
The KKL Theorem provides a stronger result.

1
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1.3 The KKL Theorem

This theoreom was given by Kahn, Kalai, and Linial in 1988.

Theorem 1.1: For any Boolean function f : {−1, 1}n → {−1, 1}, there exists a variable i ∈ [n]
and constant c > 0 such that

Ii(f) ≥ c ·Var(f) · log n
n

This result is improves the Ω(1/n) bound by a logarithmic factor.

From lecture 15, recall

Claim 1.2: For any g : {−1, 1}n → {−1, 0, 1}n,

Stab 1
3
[g] ≤ ∥g∥32

The proof for this claim is as follows. We begin by applying Holder’s inequality with 1
4 and 3

4 ,

Stab 1
3
[g] = ⟨T 1

3
g, g⟩

= ∥T 1
2
g∥4∥g∥ 4

3

Alternatively we can express it as

⟨T 1
3
g, g⟩ = ⟨T 1√

3
g, T 1√

3
g⟩

= ∥T 1√
3
g∥22

and

∥T 1
2
g∥4∥g∥ 4

3
= ∥T 1√

3
(T 1√

3
g)∥4∥g∥ 4

3

≤ ∥T 1
3
(T 1

3
g)∥4∥g∥ 4

3

When applying the noise parameter δ to obtain the 4-norm, this is at most the 2-norm of the
function.

∥T 1
3
(T 1

3
g)∥4∥g∥ 4

3
≤ ∥T 1√

3
g∥2∥g∥ 4

3

Theorem 1.3: (2, 4) Hypercontractivity For any real-valued Boolean function f

∥Tρf∥4 ≤ ∥f∥2

Applying this theorem to our context implies

∥T 1√
3
g∥2 ≤ ∥g∥ 4

3

= E[|g(x)|]
3
4 (by definition)

= E[|g(x)|2]
1
2
· 3
4 (for squared functions the absolute value becomes redundant)

= ∥g∥
3
2
2
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1.4 Proof for the KKL Theorem

Corollary 1.4: For any Boolean function f : {−1, 1}n → {−1, 1} and any index i ∈ [n]:

Stab 1
3
[Dif ] ≤ ∥Dif∥32 = Ii(f)

1
3

This corollary tells us that when examining the noise stability of the discrete derivative of any
function, we can upper bound it by the influence raised to a power greater than 1. Assuming Var(f)

is constant, we can prove that the influence of each variable is at least Ω
(
logn
n

)
.

Remark 1.5: If the total influence I(f) = Ω(log n), then the KKL theorem follows trivially by
the pigeonhole principle.

Claim 1.6: There exists a constant c such that for a Boolean function f

∃ i such that Ii(f) ≥ 2−c·I

where I = I(f).

From corollary 1.4, we can write

n∑
i=1

Stab 1
3
[Dif ] ≤

n∑
i=1

Ii(f)
3
2

≤ max
i

{Ii(f)}
1
2 ·

n∑
i=1

Ii(f)

= max
i

{Ii(f)}
1
2 · I(f)

A Fourier formula for Stab1/3[Dif ] is

= ⟨T 1
3
Dif,Dif⟩ (by definition)

=

〈
T 1

3

(∑
i∈S

f̂(S)χS\{i}

)
,
∑
i∈S

f̂(S)χS\{i}

〉
(any monomial without xi vanishes in this calculation)

=
∑
i∈S

(
1

3

)|S|−1

f̂(S)2

Summing over all variables

n∑
i=1

Stab 1
3
[Dif ] =

n∑
i=1

∑
i∈S

(
1

3

)|S|−1

f̂(S)2

=
∑
S⊆[n]

(
1

3

)|S|−1

|S|f̂(S)2

≥ 1

3
ES∼Sf

[
1

3

|S|]
≥ 1

3
· 3−E[|S|] (by convexity)
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This gives us a lower bound related to the influence. Therefore we get

2−c·I(f) ≤ max
i

{Ii(f)}
1
2 · I(f)

⇒ max
i

{Ii(f)} ≥ 2−2ci·I(f)

I(f)2

This result is also known as the edge-isoperimetric version of KKL.
To obtain the standard KKL theorem from this, we consider two cases:

• Case 1: I(f) = β log n for some constant β

⇒ ∃ i such that Ii(f) ≥
β log n

n

This immediately gives us the desired result.

• Case 2: I(f) < β log n Using theorem 1.1 and corollary 1.4:

∃ i such that Ii(f) ≥ 2−cβ logn

We want to choose β such that cβ < 1, so let us choose β = 0.9
c . This gives us

∃ i such that Ii(f) ≥ n−0.9

For sufficiently large n, this bound is stronger than the required Ω
(
logn
n

)
, completing the proof

of the KKL theorem.

2 Freidgut Junta Theorem

What can we say more when I(f) is small, particularly, when I(f) << log n?

2.1 Background

Theorem 2.1: For any Boolean function f : {−1, 1}n → {−1, 1} and any 0 ≤ ϵ ≤ 1, the function
f is ϵ-close to a k-junta where

k = 2
c·I(f)

ϵ

Here, ϵ-close means that f differs from the junta on at most an ϵ fraction of inputs, and I(f) is
the total influence of f .

Definition 2.2: A function g : {−1, 1}n → R is a k-junta if there exists a set S ⊆ [n] with
|S| ≤ k and a function h : {−1, 1}S → R such that for all x,

g(x) = h(xS)

In the case 2 considered for the KKL theorem, if I(f) is small we can pick a coordinate with in-
fluence. Theorem 2.1 shows that we can keep collecting these influential coordinates to approximate
f by a function that depends only on these coordinates.
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2.2 Proof for the Junta Theorem

The proof relies on a low-degree version of hypercontractivity.

Definition 2.3: (Low-degree Hypercontractivity) For any real-valued function f : {−1, 1}n →
R with deg(f) ≤ d

∥f∥4 ≤ (3)d/2∥f∥2
Since the total influence I(f) is small, there can only be a limited number of variables with

significant influence. Let
J = {i · Ii(f) ≥ δ}

be the set of coordinates with influence at least δ = 2−
C·I(f)

ϵ .
Define g as

g(x) =
∑

S⊆J,|S|≤d

f̂(S)χS(x)

And
h(x) = sign(g(x)).

By construction, g, h is are |J |-juntas.

Definition 2.4: (Degree-d truncation) For a function g : {−1, 1}n → {−1, 1} that can be
written as

g(x) =
∑
S⊆[n]

cSχ(x)
S ,

for 0 ≤ d ≤ n, we can define

g≤d(x) =
∑

S⊆[n],|S|≤d

cSχ(x)
S .

In this case, we choose

d =
10 · I(f)

ϵ

Claim 2.4: The set J cannot be too large,

|J | ≤ I(f)

δ

We need to show that ∥f − g∥22 is small, which will establish that f is ϵ-close to a junta (junta
g).

∥f − g∥22 =
∑
|S|>d

f̂(S)2 +
∑

S ̸⊂J,|S|≤d

f̂(S)2

The first term is small because of the Fourier concentration (the Markov bound on the spectral
sample) ∑

|S|> 10·I(f)
ε

f̂(S)2 ≤ ε

10
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For the second term, ∑
S ̸⊂J,|S|≤d

f̂(S)2 ≤
∑
i ̸∈J

∑
i∈S,|S|≤d

f̂(S)2

≤
∑
i ̸∈J

∥Dif
≤d∥22

where Dif
≤d is the degree-d truncation of the discrete derivative,

Dif
≤d =

∑
i∈S,|S|≤d

f̂(S)χS\{i}(x).

To rewrite this bound, we use degree bounded hypercontractivity.

Claim 2.5 (degree bounded hypercontractivity): Let g : {−1, 1}n → {−1, 0, 1}. For any
d, ∣∣∣∣∣∣g≤d

∣∣∣∣∣∣2
2
≤

√
3
d · ||g||

5
2
2 .

Proof: By definition, we have ∣∣∣∣∣∣g≤d
∣∣∣∣∣∣2
2
= ⟨g≤d, g≤d⟩.

By orthormality, we can say ∣∣∣∣∣∣g≤d
∣∣∣∣∣∣2
2
= ⟨g≤d, g≤d⟩ = ⟨g≤d, g⟩.

This gives an ideal form to apply Hölder’s inequality with p = 1
4 , q = 3

4 , to get∣∣∣∣∣∣g≤d
∣∣∣∣∣∣2
2
= ⟨g≤d, g⟩

≤
∣∣∣∣∣∣g≤d

∣∣∣∣∣∣
4
||g|| 4

3
.

Substituting using the 2-43 hypercontractivity, we get∣∣∣∣∣∣g≤d
∣∣∣∣∣∣2
2
≤
∣∣∣∣∣∣g≤d

∣∣∣∣∣∣
4
||g|| 4

3

≤ 3
d
2 ||g||2||g|| 4

3
.

For the last step, we note that by the definition of norm, we see

||g|| 4
3
=
(
E
[
|g|

4
3

]) 3
4
=
(
E[|g|2]

1
2

) 3
2
= (E[|g|])

3
2 = ||g||

3
2
2 .

Substituting, we get ∣∣∣∣∣∣g≤d
∣∣∣∣∣∣2
2
≤ 3

d
2 ||g||2||g|| 4

3

≤ 3
d
2 ||g||2|||g||

3
2
2 = 3

d
2 |g||

5
2
2 .
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Using this claim, we see

∥Dif
≤d∥22 = ⟨Dif

≤d, Dif
≤d⟩

= ⟨Dif
≤d, Dif⟩

≤ ∥Dif
≤d∥4∥Dif∥ 4

3

≤ (3)d/2∥Dif∥5/22 (by hypercontractivity)

Putting it all together, ∑
S ̸⊂J,|S|≤d

f̂(S)2 ≤ 3d/2
∑
i ̸∈J

Ii(f) ·
√
Ii(f)

3 Talagrand’s Version of KKL, an Improved KKL

When a function has a low influence, the majority of the coefficients must be comparable to logn
n .

Talagrand’s Version of KKL is stated as follows:

Theorem 3.1. For any f : {−1, 1}n → {−1, 1},
n∑

i=1

Ii(f)

log
(

1
Ii(f)

) ≥ Var(f).

Proof: By definition, we can say

Var(f) =
∑
S ̸=∅

f̂(S)2.

Expanding by each i ∈ [n], we get

Var(f) =
∑
S ̸=∅

f̂(S)2 =
n∑

i=1

∑
S∋i

1

|S|
f̂(S)2.

For each i, we define

gi(x) =
∑
S∋i

1

|S|
1
2

f̂(S)χS(x).

Therefore, we can rewrite the variance as

Var(f) =

n∑
i=1

∑
S∋i

1

|S|
f̂(S)2 =

n∑
i=1

||gi||22.

Since ||gi||22 =
∑

S∋i
1
|S| f̂(S)

2, we can expand each ||gi||22 as

||gi||22 =
∑

|S|≤di,S∋i

1

|S|
f̂(S)2 +

∑
|S|>di,S∋i

1

|S|
f̂(S)2

where

di = C · log
(

1

Ii(f)

)
.



Lecture 16: March 25, 2025 8

Since 1
|S| ≤ 1 for |S| ≤ di and

1
|S| ≤

1
di

for |S| ≤ di, we can say

||gi||22 =
∑

|S|≤di,S∋i

1

|S|
f̂(S)2 +

∑
|S|>di,S∋i

1

|S|
f̂(S)2

≤ ||gi||22 =
∑

|S|≤di,S∋i

f̂(S)2 +
1

di

∑
|S|>di,S∋i

f̂(S)2.

We bound each sum separately.
∑

|S|>di,S∋i f̂(S)
2 is bounded above by ϵ

10 by Markov’s inequality.
Since this holds for any ϵ > 0, this term effectively disappears from our sum. Meanwhile, we see
that by the definition of the derivative,∑

|S|≤di,S∋i

1

|S|
f̂(S)2 =

∣∣∣∣∣∣Dif
≤d
∣∣∣∣∣∣2
2
.

By the degree bound version of hypercontractivity and the definition of influence, we can say∑
|S|≤di,S∋i

1

|S|
f̂(S)2 =

∣∣∣∣∣∣Dif
≤di
∣∣∣∣∣∣2
2
≤ 3

di
2 ||Dif ||

5
2
2 = Ii(f)

5
4 · 3

di
2 .

Returning to the equation with the variance, we get

Var(f) =
n∑

i=1

||gi||22

≤
n∑

i=1

Ii(f)
5
4 · 3

di
2

≤
n∑

i=1

Ii(f) · 3
di
2

since the influence of each coordinate is a probability between 0 and 1. Substituting the value of
di, we get

Var(f) =

n∑
i=1

||gi||22

≤
n∑

i=1

Ii(f) · 3
di
2

=
n∑

i=1

Ii(f) · 3
C·log

(
1

Ii(f)

)
2

=

n∑
i=1

Ii(f)

log
(

1
Ii(f)

)
by setting C according so that any extra constants cancel out.
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4 Freidgut-Kalai-Naor (FKN) Theorem

We saw before in class that if a Boolean valued function has degree 1 (i.e., all its Fourier mass is
on level 1), then it must be a dictator (or anti-dictator). The FKN theorem, stated below, proves
a robust version of this fact.

Theorem 4.1. Let f : {−1, 1}n → {−1, 1} be such that

W 1[f ] =
n∑

i=1

f̂({i})2 ≥ 1− ϵ.

Then, f is ϵ-close to xi or −xi.

Proof: We define

h =
n∑

i=1

f̂({i})xi.

For ease of notation, we will say f̂(i) = f̂({i}). Squaring both sides, we see

h2 =
n∑

i=1

f̂(i)2 + 2
n∑

i<j

f̂(i)f̂(j)xixj .

Since Var(h2) =
∑

S ̸=∅ ĥ(S)
2 by definition, we can use the above equation to say

Var(h2) = 4
n∑

i<j

f̂(i)2f̂(j)2

= 2

( n∑
i=1

f̂(i)2

)2

−
n∑

i=1

f̂(i)4


≥ 2

(
(1− ϵ)2 −maxi{f̂(i)2}

)
.

Note that the last inequality comes from the assumption on f . Rearranging the inequality, we get

maxi{f̂(i)2} ≥ (1− ϵ)2 − Var(h2)

2
.

Next, we will bound Var(h2) to demonstrate that it is small. To do this, we define

g(x) =
∑
i<j

f̂(i)f̂(j)xixj ,

which has the nice property that
||g||22 = C ·Var(h2).

We will make of the fact that ||g||22 ≤ 3deg(g)||g||1. In this case, it allows us to say that

C ·Var(h2) = ||g||22 ≤ 3deg(g)||g||1

E[h2] = 1
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∑
S⊆[n]

ĥ(S) = 1

ĥ(∅) +
∑
S ̸=∅

ĥ(S) = 1

ĥ(∅) + Var(h) = 1.

Since ĥ(∅) = 1, this allows us to see
Var(h) = 0.

As a result, our inequality simplifies to

maxi{f̂(i)2} ≥ (1− ϵ)2

maxi{|f̂(i)|} ≥ 1− ϵ

1−maxi{|f̂(i)|} ≤ ϵ.

This inequality shows that for i′ ∈ [n] which maximizes maxi{|f̂(i)|}, f is ϵ-close to xi′ or −xi
(whichever ends up being 1).
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