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1 Condorcet elections

The 3-party condorcet election setting is as follows: 3 candidates, n voters, the voters each gives
a linear ranking of the candidates, and every pair of candidates are compared according to the
ranking, as shown in the table below.

x y z
a(+1)b(−1) b(+1)c(−1) c(+1)a(−1)

voter 1: b > a > c −1 +1 −1
voter 2: b > c > a −1 +1 +1

...
...

...
...

voter n: a > b > c +1 +1 −1

A voting rule is a function f : {−1, 1}n → {−1, 1}. String x is a string in {−1, 1}n representing
each voter’s comparison between candidate a and b: xi = 1 if voter i prefers candidate a and
xi = −1 otherwise. Candidate a wins over b if f(x) = 1 and vice versa. String y and z are defined
similarly for the other two pairs of comparisons. The candidate a wins the whole election if a wins
both pairwise comparisons involving a, that is f(a) = 1 and f(z) = −1.

Theorem 1.1 (Arrow’s Theorem). Let the voting rule f be balanced and unanimous. Then the
only such rule for which there is a condorcet winner is DICTATORS = {x1, · · · , xn}

To prove this, we first define the not-all-equal predicate to be NAE : {−1, , 1}n → {0, 1}, where

NAE(ω) =

{
0 if ω1 = ω2 = ω3

1 otherwise

There is a condorcet winner if and only if NAE((f(x), f(y), f(z)) = 1.

Observation 1.2. For any voter, there are 3! = 6 ways of ranking a, b, c. Observe that for any
voter i, (xi, yi, zi) cannot be (+1,+1,+1) or (−1,−1,−1) assuming they all give valid rankings.

Observation 1.3. NAE(x) = 3
4 − 1

4x1x2 −
1
4x2x3 −

1
4x3x1

Claim 1.4. If each voter independently picks a ranking uniformly at random, then the probability
that there exists a condorcet winner is 3

4(1−NS− 1
3
(f)).

With Claim 1.4, we can prove Arrow’s Theorem.

Proof of Theorem 1.1. For there to always be condorcet winner, Pr[∃ a condorcet winner] = 1,
that is, NS− 1

3
(f) = −1

3 . By a result from last lecture, this is true if and only if f is the dictator

function.

We now try to prove Claim 1.4.
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Proof of Claim 1.4. Observe for any i, xi = yi with probability 1/3 for a random ranking. This is
saying we can write y as if sampled from the noisy distribution Nρ(x) where ρ = −1/3. We can do
similar for y, z and x, z.

E[NAE(f(x), f(y), f(z))] =
3

4
− 1

4
Ex∼{±1}n,y∼Nρ(x)[f(x)f(y)]−

1

4
E[f(y)f(z)]− 1

4
E[f(z)f(x)]

=
3

4
− 3

4
NS− 1

3
(f)

The first equality follows from Observation 1.3 and the second equality is by definition of the noisy
stability NSρ(f).

2 Fourier concentration of computational models

We now switch gears and start a new topic: the Fourier concentration of computational models.
We first give a few definitions. Let f : {−1, 1} → {−1, 1}. 1

For k = 0, 1, · · · , n, define the level -k mass to be

W k[f ] =
∑

S:|S|=k

f̂(S)2

and define the level k tail to be
W≥k[f ] =

∑
S:|S|≥k

f̂(S)2

Claim 2.1. For any f : {−1, 1}n → {−1, 1} and ε > 0, W≥k[f ] ≤ ε, for k = I(f)
ε .

Proof. Recall the spectral distribution S on 2[n] where Pr[S = T ] = f̂(x)2, and ET∼S [|T |] = I(f).
Then by Markov’s inequality,

W≥k(f) = Pr
T∼S

[|T | ≥ k] ≤ I(f)

k
= ε

Corollary 2.2. W≥k(MAJ) ≤ ε, k = O(
√
n
ε ).

2.1 Decision Trees

A decision tree is a model of computation where the nodes are labeled with variables, leaf nodes
are labeled +1 or −1; each node has out-degree 2, including an edge representing +1 and another
representing −1.

There are two complexity measures that we care about, the depth which is the length of the
longest root-to-leaf path, and the size which the number of edges.

For a function f : {−1, 1}n → {−1, 1}, define

DTdepth(f) = min{depth of decision tree T : T computes f}

and define
DTsize(f) = min{size of decision tree T : T computes f}

1Some of the results here also generalize to R-valued functions, but for most applications, we focus on Boolean
valued functions.
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We also define the degree of a function. Let f : {−1, 1}n → {−1, 1}, the degree of f is the
highest degree of monomials, i.e.

deg(f) = max
S:f̂(S) ̸=0

{|S|}

Claim 2.3. Suppose f is computable by a depth d decision tree, then W≥d+1[f ] = 0.

The above claim can be rephrased as deg(f) ≤ DTdepth(f). We will prove this claim in the next
lecture, but before that, one can ask if the converse is true, that is, “is DTdepth(f) upper bounded
by the degree of the function in some form? This is still an open problem and the best bound we
know so far is DTdepth(f) ≤ deg(f)4.


	Condorcet elections
	Fourier concentration of computational models
	Decision Trees


