CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 15: March 20, 2025
Lecturer: Eshan Chattopadhyay Scribe:  Austin Li

1 Hypercontractivity

Recall the following definitions. For any x € {—1,1}",p € [0,1], we have the noisy distribution

N,(z) on —1,1™ samples as follows:

y~ N p(ﬂf)
KD with probability p
vi= random with probability 1 — p

where each y; is sampled independently.
From this, we define the noise operator T}, f(x).

Theorem 1.1 ((2, 4)-Hypercontractivity Theorem). For f : {—-1,1}" — R,p = %, T, flla <
[1F]l2-

Proof. We will perform induction on n. For the base case n = 0, the theorem holds trivially.
Next, we perform the inductive step. Assume that the theorem holds for n — 1. We can write
f:{-1,1}" — R as the sum of Fourier coefficients without x,, and those with.

fl@y,oan) = Y fO)xs@@)+ > f(SU{n})xs(a)zn
SCln—1] SC[n—1]
= fi(z) + zn fo(z)
Here, we take fi, fo to be functions on the first n — 1 bits. Next, we examine the noise operator on
f.
Tpf () = T,(f1(2) + zn f2(2))
=Tpfi(z) + Tp(xnfa(x))
=T, f1(x) + pxpT) fo(x)
Note that because T}, is just taking the expectation, it is linear. Also, because each bit y; in the

noise operator in sampled independently of the other bits, we can separate x,, from fa(x) in the
noise operator. Now we examine the 4 norm.

T, f113 = Ee[T,f(2)"]
= Ex[(Tpfl (7) + Panpf2($))4
= B [T, f1(2)"] + 4B [T, f1(2)* prn T fo(2)] 4 6B [T, f1(2)* (pxn T, f2(x))?]
+ 4B, [T, f1(2) (prn T, fo(2))*] + Ea[(pnTp fo ()]

~ —
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Next, observe that we can use the independence of x;, from both T}, f1, T}, fo.

Ex[Tpfl(Jf)gpanpﬁ(x)] = Ex[Tpfl ($)3Tpf2($)]Ex[Pxn] =0

Note that at the end, since x,, is uniformly randomly sampled from {—1, 1}, its expectation will be
0. The same logic holds for E, [T, f1(z)(pznT),f2(z))3] = 0.

With this, we can further simplify the 4 norm of the noise operator.

I Tpf 113 = EalT, f1(2)*] + 6B [T, f1(2)* (p2n T, f2(2))?] + Eal(pn T, fa(2))*)
= B [T, f1(2)"] + 6p°Ea [T, f1(2)° T, fo(2)*|Be [27] + p*Ba[T) fo ()| By 2]
= B [T, f1(2)"] + 2. [T, f1(2)*T, fa(2)?] + p*Ba [T, fo ()]
< By [Tp f1(2)"] 4 2Ea [T, 1 (2)°T) fo(2)?] + By [T fo ()]

Note that we use the fact that x, € {—1,1} to conclude that ¥2 = z} = 1 always. Also, p =
was used for the last inequality.

Sl

Next, we use the Cauchy-Schwartz inequality to simplify the middle term.

N

Eo[Tpf1(2)*Tp f2(2)?] < (EolT) f1(2) |Eo[T) fo()"])

Using this, we can now apply the inductive hypothesis on T}, f1, T}, fa.

TpfI1E < BolTpf1(2)") + (BalT) fi (2) Bl T, fo(2)])? + BT fa(e) ]
= ||Tpf1|’3 + ZHTple?LHTpf2||z21 + HTprH?i
< f1llz + 2l A1l 2115 + [ f2l]2
= (1AIB +11£218)°
=171l

Note that at the very end, we use the fact that fi, fo have disjoint Fourier coefficients by construc-
tion. Thus, adding them together will exactly give the full set of Fourier coefficients of f.

Thus, by induction, we have the (2,4)-Hypercontractivity theorem. ]

Theorem 1.2 ((3,2)-Hypercontractivity Theorem). For f : {-1,1}" — R,p = %, T, fll2 <
1A 1]s-
3

Proof. We have,

HTpr% - <Tpf7 Tpf>

= 3 sy

SC[n]

<f? f)
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Next, we use Holder’s Inequality with p = %, q=4.
T, /13 = (f, T2 f)
< |[f1[sl|Tp2 fla
= £l ITp(Tp )
< |[A11s1T, fl2
= 1T fll2 < [171ls

Note that we use the (2,4) Hypercontractivity theorem for ||T,(T,f)||4 < ||T,f]]2- O

2 Noisy Hypercube

Definition 2.1. The noisy hypercube is defined as the following weighted graph G = (V, E, w)
where w : E — R is the weight of an edge.

V={-11}"
w(e = (u,v)) =Py, w(y =v)
Note that with this definition, the set of edges is complete and also includes self-edges.
Observation 2.2. Foranyu €V, Y ., w(u,v) = 1. Further, for anyu,v € V, w(u,v) = w(v,u).
Definition 2.3. G = (V, E,w) is a (¢,9) small set expander if for any S C [n], |S| < §|V],
¢6(S) =Pansyouw) (Y € S) > 1 —¢

Proposition 2.4. The noisy hypercube, with p = 1/+/3, is a small set expander.

Proof. Let p = %, S C{-1,1}",|S| = 02". Define f : {—1,1}" — R as the indicator on S, f = 1.

Observe that the noise stability of f is related to the small set expander definition.

Stab,2 (f) = E;(;N{—Ll}”,yNNpQ () [f(@)f(y)]
=PxeSAyeSs)
=P(x € S)P(y € S|z € 5)

The conditional probability P(y € S|z € S) is exactly the complement of the small set expander
probability ¢ (S). Thus, we aim to get a bound on the noise stability.

Stabyz(f) = (f, Tp2 f)
= (Tpf, Tpf)
= ITpf113
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For the inequality, we used the (%, 2)-Hypercontractivity theorem. Note that we also used the fact
that f is an indicator and thus only takes values in {0, 1} to compute the expectation.

Finally, we can use this to compute the desired probability.

]P)zNS,yNNp(a:) (y ¢ S) =1- ]P)(y € S)

B Stabpz( f)

P(x € S)
3
02
>1 - —
- )
—1_63

Thus, we have shown that the noisy hypercube is a (¢ %, 0) small set expander. O

Remark 2.5. The bound on Stab,:(f) would also work if f took values in {0,1,—1} rather than
gust {0,1}. This will be useful for future hypercontractivity applications.
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