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1 Hypercontractivity

Recall the following definitions. For any x ∈ {−1, 1}n, ρ ∈ [0, 1], we have the noisy distribution
Nρ(x) on −1, 1n samples as follows:

y ∼ Nρ(x)

yi =

{
xi with probability ρ

random with probability 1− ρ

where each yi is sampled independently.
From this, we define the noise operator Tρf(x).

Tρf(x) = Ey∼Nρ(x)[f(y)]

=
∑
S⊆[n]

ρ|S|f̂(S)2

Theorem 1.1 ((2, 4)-Hypercontractivity Theorem). For f : {−1, 1}n → R, ρ = 1√
3
, ||Tρf ||4 ≤

||f ||2.

Proof. We will perform induction on n. For the base case n = 0, the theorem holds trivially.
Next, we perform the inductive step. Assume that the theorem holds for n − 1. We can write
f : {−1, 1}n → R as the sum of Fourier coefficients without xn and those with.

f(x1, . . . , xn) =
∑

S⊆[n−1]

f̂(S)χS(x) +
∑

S⊆[n−1]

f̂(S ∪ {n})χS(x)xn

= f1(x) + xnf2(x)

Here, we take f1, f2 to be functions on the first n− 1 bits. Next, we examine the noise operator on
f .

Tρf(x) = Tρ(f1(x) + xnf2(x))

= Tρf1(x) + Tρ(xnf2(x))

= Tρf1(x) + ρxnTρf2(x)

Note that because Tρ is just taking the expectation, it is linear. Also, because each bit yi in the
noise operator in sampled independently of the other bits, we can separate xn from f2(x) in the
noise operator. Now we examine the 4 norm.

||Tρf ||44 = Ex[Tρf(x)
4]

= Ex[(Tρf1(x) + ρxnTρf2(x))
4]

= Ex[Tρf1(x)
4] + 4Ex[Tρf1(x)

3ρxnTρf2(x)] + 6Ex[Tρf1(x)
2(ρxnTρf2(x))

2]

+ 4Ex[Tρf1(x)(ρxnTρf2(x))
3] + Ex[(ρxnTρf2(x))

4]

1
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Next, observe that we can use the independence of xn from both Tρf1, Tρf2.

Ex[Tρf1(x)
3ρxnTρf2(x)] = Ex[Tρf1(x)

3Tρf2(x)]Ex[ρxn] = 0

Note that at the end, since xn is uniformly randomly sampled from {−1, 1}, its expectation will be
0. The same logic holds for Ex[Tρf1(x)(ρxnTρf2(x))

3] = 0.

With this, we can further simplify the 4 norm of the noise operator.

||Tρf ||44 = Ex[Tρf1(x)
4] + 6Ex[Tρf1(x)

2(ρxnTρf2(x))
2] + Ex[(ρxnTρf2(x))

4]

= Ex[Tρf1(x)
4] + 6ρ2Ex[Tρf1(x)

2Tρf2(x)
2]Ex[x

2
n] + ρ4Ex[Tρf2(x)

4]Ex[x
4
n]

= Ex[Tρf1(x)
4] + 2Ex[Tρf1(x)

2Tρf2(x)
2] + ρ4Ex[Tρf2(x)

4]

≤ Ex[Tρf1(x)
4] + 2Ex[Tρf1(x)

2Tρf2(x)
2] + Ex[Tρf2(x)

4]

Note that we use the fact that xn ∈ {−1, 1} to conclude that x2n = x4n = 1 always. Also, ρ = 1√
3

was used for the last inequality.

Next, we use the Cauchy-Schwartz inequality to simplify the middle term.

Ex[Tρf1(x)
2Tρf2(x)

2] ≤
(
Ex[Tρf1(x)

4]Ex[Tρf2(x)
4]
) 1

2

Using this, we can now apply the inductive hypothesis on Tρf1, Tρf2.

||Tρf ||44 ≤ Ex[Tρf1(x)
4] +

(
Ex[Tρf1(x)

4]Ex[Tρf2(x)
4]
) 1

2 + Ex[Tρf2(x)
4]

= ||Tρf1||44 + 2||Tρf1||24||Tρf2||24 + ||Tρf2||44
≤ ||f1||42 + 2||f1||22||f2||22 + ||f2||42
=

(
||f1||22 + ||f2||22

)2
= ||f ||42

Note that at the very end, we use the fact that f1, f2 have disjoint Fourier coefficients by construc-
tion. Thus, adding them together will exactly give the full set of Fourier coefficients of f .

Thus, by induction, we have the (2, 4)-Hypercontractivity theorem.

Theorem 1.2 ((43 , 2)-Hypercontractivity Theorem). For f : {−1, 1}n → R, ρ = 1√
3
, ||Tρf ||2 ≤

||f || 4
3
.

Proof. We have,

||Tρf ||22 = ⟨Tρf, Tρf⟩

=
∑
S⊆[n]

ρ2|S|f̂(S)2

= ⟨f, Tρ2f⟩
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Next, we use Holder’s Inequality with p = 4
3 , q = 4.

||Tρf ||22 = ⟨f, Tρ2f⟩
≤ ||f || 4

3
||Tρ2f ||4

= ||f || 4
3
||Tρ(Tρf)||4

≤ ||f || 4
3
||Tρf ||2

=⇒ ||Tρf ||2 ≤ ||f || 4
3

Note that we use the (2, 4) Hypercontractivity theorem for ||Tρ(Tρf)||4 ≤ ||Tρf ||2.

2 Noisy Hypercube

Definition 2.1. The noisy hypercube is defined as the following weighted graph G = (V,E,w)
where w : E → R is the weight of an edge.

V = {−1, 1}n

w(e = (u, v)) = Py∼Nρ(u)(y = v)

Note that with this definition, the set of edges is complete and also includes self-edges.

Observation 2.2. For any u ∈ V ,
∑

v∈V w(u, v) = 1. Further, for any u, v ∈ V , w(u, v) = w(v, u).

Definition 2.3. G = (V,E,w) is a (ϵ, δ) small set expander if for any S ⊆ [n], |S| ≤ δ|V |,

ϕG(S) = P(x∼S,y∼w)(y ̸∈ S) ≥ 1− ϵ

Proposition 2.4. The noisy hypercube, with ρ = 1/
√
3, is a small set expander.

Proof. Let ρ = 1√
3
, S ⊆ {−1, 1}n, |S| = δ2n. Define f : {−1, 1}n → R as the indicator on S, f = 1S .

Observe that the noise stability of f is related to the small set expander definition.

Stabρ2(f) = Ex∼{−1,1}n,y∼Nρ2 (x)
[f(x)f(y)]

= P(x ∈ S ∧ y ∈ S)

= P(x ∈ S)P(y ∈ S|x ∈ S)

The conditional probability P(y ∈ S|x ∈ S) is exactly the complement of the small set expander
probability ϕG(S). Thus, we aim to get a bound on the noise stability.

Stabρ2(f) = ⟨f, Tρ2f⟩
= ⟨Tρf, Tρf⟩
= ||Tρf ||22
≤ ||f ||24

3

= E[|f(x)|
4
3 ]

3
2

= P(f(x) = 1)
3
2

=

(
|S|
2n

) 3
2

= δ
3
2
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For the inequality, we used the (43 , 2)-Hypercontractivity theorem. Note that we also used the fact
that f is an indicator and thus only takes values in {0, 1} to compute the expectation.

Finally, we can use this to compute the desired probability.

Px∼S,y∼Nρ(x)(y ̸∈ S) = 1− P(y ∈ S)

= 1−
Stabρ2(f)

P(x ∈ S)

≥ 1− δ
3
2

δ

= 1− δ
1
2

Thus, we have shown that the noisy hypercube is a (δ
1
2 , δ) small set expander.

Remark 2.5. The bound on Stabρ2(f) would also work if f took values in {0, 1,−1} rather than
just {0, 1}. This will be useful for future hypercontractivity applications.
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