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1 Recap from Lecture 12

Proposition 1.1. Let f be computed by a size s DNF. Then f is ε-close to a function g computed
by a DNF with width w = log(s/ε) .

Proposition 1.2. Let f be computed by a width w DNF. Then its influence satisfies I(f) ≤ 2w.

Corollary 1.3. Let f be computed by a width w DNF. Then for ε > 0, the Fourier coefficients of
f is ε-concentrated on degree up to I(f)/ε = 2w/ε.

Combining Proposition 1.1 and Corollary 1.3 yields the following theorem:

Theorem 1.4. For any size s DNF, its Fourier coefficients are ε-concentrated up to degree k =
O(1/ε · log(s/ε)).

Corollary 1.5. There is a low-degree algorithm that runs in time poly(nO(1/ε·log(s/ε)), 1/ε), and
PAC learns DNFs of size s with error 2ε.

The goal of this lecture is to improve the bound in Theorem 1.4 from O(1/ε · log(s/ε)) to
O(log(1/ε) · log(s/ε)). A direct consequence is that when ε is a small constant and s = poly(n),
then nO(1/ε·log(s/ε)) ≈ nlog(n), and nO(log(1/ε)·log(s/ε)), which is has a much better dependence on
the error parameter. In fact the machinery we will develop can be used to derive a PAC learning
algorithm (in the query model) that runs in time nO(log logn).

2 Improving the bound via Restrictions

The technique we are going to use is combining random restrictions with Fourier Analysis.

Definition 2.1. A restriction ρ is a pair (J, z) where J ⊆ [n] is the set of unrestricted variables,
and z ∈ {−1, 1}n represents the restricted values of variables outside J .

Definition 2.2. Consider f : {−1, 1}n → R. The function under restriction of ρ is fρ : {−1, 1}n →
R, defined as fρ(x) = f(xJ , zJ̄). Here y = (xJ , zJ̄) is defined as

yi =

{
xi if i ∈ J,
zi if i /∈ J.

What we are more interested in is random restriction, formally defined as follows.

Definition 2.3. For n ≥ 0, δ ∈ [0, 1], consider sampling ρ = (J, z) in the following way. For each
i ∈ [n], i is added to J independently w.p. δ, and z ∼ {−1, 1}n is sampled uniformly at random.
Such distribution is called a δ-random restriction, denoted by ρn,δ.

From the definitions, we can easily compute the Fourier coefficients of fρ:
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Claim 2.4. f̂ρ(S) = (
∑

T⊆J̄ f̂(S ∪ T )χT (zJ̄)) · 1S⊆J .

Proof. Using the definition of Fourier expansion, we have

fρ(x) = f(xJ , zJ̄) =
∑

S⊆J,T⊆J̄

f̂(S ∪ T )χS(xJ)χT (zJ̄)

=
∑
S⊆J

(
∑
T⊆J̄

f̂(S ∪ T )χT (zJ̄))χS(xJ).

The result follows.

After that, we can compute the expectations of f̂ρ(S) and f̂ρ(S)2 over the distribution ρn,δ.

Claim 2.5. Eρ∼ρn,δ [f̂ρ(S)] = δ|S|f̂(S).

Proof. From Claim 2.4, Eρ[f̂ρ(S)] = EJ,z[
∑

T⊆J̄ f̂(S ∪ T )χT (zJ̄) · 1S⊆J ]. Note that if S 6⊆ J , then∑
T⊆J̄

f̂(S ∪ T )χT (zJ̄)1S⊆J = 0.

If S ⊆ J , then

Ez[
∑
T⊆J̄

f̂(S ∪ T )χT (zJ̄)1S⊆J ] = Ez[f̂(S)χ∅(zJ̄)] + Ez[
∑

T 6=∅,T⊆J̄

f̂(S ∪ T )χT (zJ̄)]

= f̂(S) + 0 = f̂(S).

Finally, we have

Eρ∼ρn,δ [f̂ρ(S)] = EJ [Ez[f̂ρ(S)]] = EJ [f̂ρ(S) · 1S⊆J ] = |δ||S|f̂ρ(S).

Claim 2.6. Eρ∼ρn,δ [f̂ρ(S)2] =
∑

W⊆[n] f̂(W )2 PrJ [W ∩ J = S].

Proof. Again by Claim 2.4, Eρ[f̂ρ(S)2] = EJ,z[
∑

T1,T2⊆J̄ f̂(S ∪ T1)f̂(S ∪ T2)χT1(zJ̄)χT2(zJ̄) · 1S⊆J ].
If S 6⊆ J then ∑

T1,T2⊆J̄

f̂(S ∪ T1)f̂(S ∪ T2)χT1(zJ̄)χT2(zJ̄) · 1S⊆J = 0.

If S ⊆ J then

Ez[
∑

T1,T2⊆J̄

f̂(S ∪ T1)f̂(S ∪ T2)χT1(zJ̄)χT2(zJ̄) · 1S⊆J ] = Ez[
∑

T1,T2⊆J̄

f̂(S ∪ T1)f̂(S ∪ T2)χT14T2(zJ̄)]

=
∑
T⊆J̄

f̂(S ∪ T )2 =
∑
W⊆[n]

f̂(W )2 · 1W∩J=S .

Combining the above estimates, we have

Eρ[f̂ρ(S)2] = EJ,z[f̂ρ(S)2] =
∑
W⊆[n]

f̂(W )2 Pr
J

[W ∩ J = S].

We conclude by presenting Hastad’s Switching Lemma. In the next lecture we will combine it
with Claim 2.5 and 2.6 to achieve the desired bound.

Lemma 2.7 (Hastad’s Switching Lemma). Suppose that f is computable by width w DNF. Then,
for any d ≥ 0, Prρ∼ρn,δ [DT (fρ) ≥ d] ≤ (7δw)d.


