CS 6817: Special Topics in Complexity Theory

Spring 2025

Lecture 13: March 6, 2025

Lecturer: Eshan Chattopadhyay

Scribe: Santiago Lai

1 Recap from Lecture 12

Proposition 1.1. Let f be computed by a size s DNF. Then f is ϵ -close to a function g computed by a DNF with width $w = \log(s/\epsilon)$.

Proposition 1.2. Let f be computed by a width w DNF. Then its influence satisfies $I(f) \leq 2w$.

Corollary 1.3. Let f be computed by a width w DNF. Then for $\epsilon > 0$, the Fourier coefficients of f is ϵ -concentrated on degree up to $I(f)/\epsilon = 2w/\epsilon$.

Combining Proposition 1.1 and Corollary 1.3 yields the following theorem:

Theorem 1.4. For any size s DNF, its Fourier coefficients are ϵ -concentrated up to degree $k = O(1/\epsilon \cdot \log(s/\epsilon))$.

Corollary 1.5. There is a low-degree algorithm that runs in time $poly(n^{O(1/\epsilon \cdot \log(s/\epsilon))}, 1/\epsilon)$, and *PAC learns DNFs of size s with error* 2ϵ .

The goal of this lecture is to improve the bound in Theorem 1.4 from $O(1/\epsilon \cdot \log(s/\epsilon))$ to $O(\log(1/\epsilon) \cdot \log(s/\epsilon))$. A direct consequence is that when ϵ is a small constant and $s = \operatorname{poly}(n)$, then $n^{O(1/\epsilon \cdot \log(s/\epsilon))} \approx n^{\log(n)}$, and $n^{O(\log(1/\epsilon) \cdot \log(s/\epsilon))}$, which is has a much better dependence on the error parameter. In fact the machinery we will develop can be used to derive a PAC learning algorithm (in the query model) that runs in time $n^{O(\log \log n)}$.

2 Improving the bound via Restrictions

The technique we are going to use is combining random restrictions with Fourier Analysis.

Definition 2.1. A restriction ρ is a pair (J, z) where $J \subseteq [n]$ is the set of unrestricted variables, and $z \in \{-1, 1\}^n$ represents the restricted values of variables outside J.

Definition 2.2. Consider $f : \{-1,1\}^n \to \mathbb{R}$. The function under restriction of ρ is $f_{\rho} : \{-1,1\}^n \to \mathbb{R}$, defined as $f_{\rho}(x) = f(x_J, z_{\bar{J}})$. Here $y = (x_J, z_{\bar{J}})$ is defined as

$$y_i = \begin{cases} x_i & \text{if } i \in J, \\ z_i & \text{if } i \notin J. \end{cases}$$

What we are more interested in is random restriction, formally defined as follows.

Definition 2.3. For $n \ge 0, \delta \in [0, 1]$, consider sampling $\rho = (J, z)$ in the following way. For each $i \in [n]$, *i* is added to *J* independently w.p. δ , and $z \sim \{-1, 1\}^n$ is sampled uniformly at random. Such distribution is called a δ -random restriction, denoted by $\rho_{n,\delta}$.

From the definitions, we can easily compute the Fourier coefficients of f_{ρ} :

Claim 2.4. $\hat{f}_{\rho}(S) = (\sum_{T \subseteq \bar{J}} \hat{f}(S \cup T)\chi_T(z_{\bar{J}})) \cdot 1_{S \subseteq J}.$

Proof. Using the definition of Fourier expansion, we have

$$f_{\rho}(x) = f(x_J, z_{\bar{J}}) = \sum_{S \subseteq J, T \subseteq \bar{J}} \hat{f}(S \cup T) \chi_S(x_J) \chi_T(z_{\bar{J}})$$
$$= \sum_{S \subseteq J} (\sum_{T \subseteq \bar{J}} \hat{f}(S \cup T) \chi_T(z_{\bar{J}})) \chi_S(x_J).$$

The result follows.

After that, we can compute the expectations of $\hat{f}_{\rho}(S)$ and $\hat{f}_{\rho}(S)^2$ over the distribution $\rho_{n,\delta}$. **Claim 2.5.** $\mathbb{E}_{\rho \sim \rho_{n,\delta}}[\hat{f}_{\rho}(S)] = \delta^{|S|}\hat{f}(S)$. *Proof.* From Claim 2.4, $\mathbb{E}_{\rho}[\hat{f}_{\rho}(S)] = \mathbb{E}_{J,z}[\sum_{T \subseteq \bar{J}} \hat{f}(S \cup T)\chi_T(z_{\bar{J}}) \cdot 1_{S \subseteq J}]$. Note that if $S \not\subseteq J$, then $\sum_{T \subseteq \bar{J}} \hat{f}(S \cup T)\chi_T(z_{\bar{J}}) 1_{S \subseteq J} = 0$.

If $S \subseteq J$, then

$$\mathbb{E}_{z}\left[\sum_{T\subseteq\bar{J}}\hat{f}(S\cup T)\chi_{T}(z_{\bar{J}})1_{S\subseteq J}\right] = \mathbb{E}_{z}\left[\hat{f}(S)\chi_{\emptyset}(z_{\bar{J}})\right] + \mathbb{E}_{z}\left[\sum_{T\neq\emptyset,T\subseteq\bar{J}}\hat{f}(S\cup T)\chi_{T}(z_{\bar{J}})\right]$$
$$= \hat{f}(S) + 0 = \hat{f}(S).$$

Finally, we have

$$\mathbb{E}_{\rho \sim \rho_{n,\delta}}[\hat{f}_{\rho}(S)] = \mathbb{E}_J[\mathbb{E}_z[\hat{f}_{\rho}(S)]] = \mathbb{E}_J[\hat{f}_{\rho}(S) \cdot 1_{S \subseteq J}] = |\delta|^{|S|} \hat{f}_{\rho}(S).$$

Claim 2.6. $\mathbb{E}_{\rho \sim \rho_{n,\delta}}[\hat{f}_{\rho}(S)^2] = \sum_{W \subseteq [n]} \hat{f}(W)^2 \operatorname{Pr}_J[W \cap J = S].$

Proof. Again by Claim 2.4, $\mathbb{E}_{\rho}[\hat{f}_{\rho}(S)^2] = \mathbb{E}_{J,z}[\sum_{T_1,T_2\subseteq \bar{J}} \hat{f}(S\cup T_1)\hat{f}(S\cup T_2)\chi_{T_1}(z_{\bar{J}})\chi_{T_2}(z_{\bar{J}})\cdot 1_{S\subseteq J}].$ If $S \not\subseteq J$ then

$$\sum_{T_1, T_2 \subseteq \bar{J}} \hat{f}(S \cup T_1) \hat{f}(S \cup T_2) \chi_{T_1}(z_{\bar{J}}) \chi_{T_2}(z_{\bar{J}}) \cdot 1_{S \subseteq J} = 0.$$

If $S \subseteq J$ then

$$\mathbb{E}_{z}\left[\sum_{T_{1},T_{2}\subseteq\bar{J}}\hat{f}(S\cup T_{1})\hat{f}(S\cup T_{2})\chi_{T_{1}}(z_{\bar{J}})\chi_{T_{2}}(z_{\bar{J}})\cdot 1_{S\subseteq J}\right] = \mathbb{E}_{z}\left[\sum_{T_{1},T_{2}\subseteq\bar{J}}\hat{f}(S\cup T_{1})\hat{f}(S\cup T_{2})\chi_{T_{1}\triangle T_{2}}(z_{\bar{J}})\right] \\ = \sum_{T\subseteq\bar{J}}\hat{f}(S\cup T)^{2} = \sum_{W\subseteq[n]}\hat{f}(W)^{2}\cdot 1_{W\cap J=S}.$$

Combining the above estimates, we have

$$\mathbb{E}_{\rho}[\hat{f}_{\rho}(S)^{2}] = \mathbb{E}_{J,z}[\hat{f}_{\rho}(S)^{2}] = \sum_{W \subseteq [n]} \hat{f}(W)^{2} \Pr_{J}[W \cap J = S].$$

We conclude by presenting Hastad's Switching Lemma. In the next lecture we will combine it with Claim 2.5 and 2.6 to achieve the desired bound.

Lemma 2.7 (Hastad's Switching Lemma). Suppose that f is computable by width w DNF. Then, for any $d \ge 0$, $\Pr_{\rho \sim \rho_{n,\delta}}[DT(f_{\rho}) \ge d] \le (7\delta w)^d$.