CS 6817: Special Topics in Complexity Theory

Spring 2025

Lecture 12: March 4, 2025

Lecturer: Eshan Chattopadhyay

Scribe: Shaleen Baral

1 Disjunctive Normal Form

We start by recalling what a disjunctive normal form is.

Definition 1.1 (DNFs). A DNF (disjunctive normal form) formula over Boolean variables $x_1, ..., x_n$ is defined to be a logical OR of terms, each of which is a logical AND of literals. A literal is either a variable x_i or its logical negation $\overline{x_i}$. The number of literals in a term is called its width. We will identify a DNF formula with the Boolean function $f : \{0,1\}^n \rightarrow \{0,1\}$ it computes.

Definition 1.2 (size, width). The *size* of a DNF formula is its number of terms. The *width* is the maximum width of its terms.

Furthermore, note that the input length is fixed for a DNF as it is a formula over finitely many Boolean variables. So, to recognize an arbitrary $L \subseteq \{0,1\}^*$ we would need multiple DNFs, one for each possible size of the input. This is the sense in which DNFs are a *non-uniform model of computation*. More formally,

Definition 1.3 (Non-Uniform Models of Computation). A family of DNFs $\{C_n\}_{n\geq 0}$ computes a language $L \subseteq \{0,1\}^*$, if the following holds:

$$\forall n \ge 0. \quad x \in \{0, 1\}^n, \quad L(x) = C_n(x).$$

Additionally, any language $L \subseteq \{0, 1\}^n$ naturally corresponds to a Boolean function,

$$f(x) = \mathbb{1}\{x \in L\}.$$

Note also that any Boolean-valued function admits a DNF representation.

Lemma 1.4. Any $f : \{0,1\}^n \to \{0,1\}$ can be computed by a DNF of size at most 2^n and width at most n.

Proof. We create a term T_x for each of the 2^n possible inputs $x \in \{0, 1\}^n$. The term T_x will contain the literal x_i if $x_i = 1$ and $\overline{x_i}$ if $x_i = 0$.

2 Spectral Concentration for DNFs

Theorem 2.1. Suppose $f : \{0,1\}^n \to \{0,1\}$ that is computable by a width w DNF. Then we have

 $I(f) \leq 2w.$

Proof. Recall the sensitivity of f at x,

s(f, x) =#neighbors of x on the Hamming cube that are colored differently by f

$$= \sum_{y \in \{0,1\}^n} \mathbb{1}\{\Delta(x, y) = 1\} \cdot \mathbb{1}\{f(y) \neq f(x)\}$$

For convenience, we define

$$s_0(f, x) = s(f, x) \cdot \mathbb{1}\{f(x) = 0\},\$$

$$s_1(f, x) = s(f, x) \cdot \mathbb{1}\{f(x) = 1\}.$$

Then, consider,

$$\mathbf{I}(f) = \mathbb{E}_x[s(f, x)]$$

= $\mathbb{E}_x[s_0(f, x) + s_1(f, x)]$
= $\mathbb{E}_x[s_0(f, x)] + \mathbb{E}_x[s_1(f, x)].$

Note next that,

$$\sum_{x} s_{0}(f, x) = \sum_{x} s(f, x) \cdot \mathbb{1}\{f(x) = 0\}$$

= $\sum_{x} \sum_{y} \mathbb{1}\{\Delta(x, y) = 1\} \cdot \mathbb{1}\{f(y) \neq f(x)\} \cdot \mathbb{1}\{f(x) = 0\}$
= $\sum_{y} s(f, y) \cdot \mathbb{1}\{f(y) \neq 1\}$
= $\sum_{y} s_{1}(f, y).$

Since *x* is uniformly distributed, this then implies that the expectations above are equal,

$$\mathbf{I}(f) = 2\mathbb{E}_{x}[s_{1}(f, x)].$$

So it suffices to show that $\mathbb{E}_x[s_1(f,x)] \le w$. If f(x) = 1 then at least one term *T* in the DNF representation of *f* must be made true by *x*. Note that if you change the value of a literal x_i that isn't present in the term *T*, the value of $f(x^{\oplus i})$ will still be 1. Thus, any *y* such that f(y) = 0 and $\Delta(x, y) = 1$ must differ from *x* in one of the literals present in *T*. Since there are at most *w* literals in *T*, we note that $s_1(f, x) \le w$. Thus,

$$\mathbf{I}(f) \le 2w$$

There are a few immediate corollaries from this.

Corollary 2.2. Suppose $f : \{0,1\}^n \to \{0,1\}$ is computable by a width w DNF, Then we get that $W^{\geq k}(f) < \epsilon$ where $K = 2w/\epsilon$ and $\epsilon > 0$.

Proof. Recall that the Fourier spectrum of f is ϵ -concentrated on degree up to $I(f)/\epsilon$ and use the fact that $I(f) \le 2w$.

Corollary 2.3. *PAC-learning for width w-DNF in the random example model with sample time* $n^{O(w/\epsilon)}$.

Proof. This follows from using the Low-Degree Algorithm with $k = 4w/\epsilon$ and noting that f is $\epsilon/2$ concentrated on degree up to $2I(f)/\epsilon$.

Next, we will show that a small DNF is well-approximated by a narrow DNF. The intuition here is that removing a single term T of a DNF only changes the entire DNFs value on at most $1/2^w$ fraction of inputs (the inputs that makes all terms in T true). So, the underlying idea is to prune high-width terms of our DNF.

Lemma 2.4 (small to narrow). Suppose $f : \{0, 1\}^n \to \{0, 1\}$ computable by size s DNF. Then there exists $g : \{0, 1\}^n \to \{0, 1\}$ such that g is computable by width $\log(s/\epsilon)$ DNFs and

$$\Pr_{x}(f(x) \neq g(x)) = \operatorname{dist}(f,g) \le \delta$$

Proof. Let $w = \log(s/\delta)$. Then let $g = \bigvee_{i=1}^{s'} T_{s_i}$ be the Boolean function obtained from $f = \bigvee_{i=1}^{s} T_i$ by removing all terms of width > w. Since every term in the DNF of g is a term in the DNF representation of f, we note that if g(x) = 1 then f(x) = 1. Furthermore note that for a T_i with widh > w, we have $\Pr(T_i = 1) \le 2^{-w}$. There are at must s such T_i , so using a union bound

 $\Pr_{\mathcal{X}}(\exists T_i = 1, \text{ such that width of } T_i \text{ is } > w) \le s \cdot 2^{-w} \le \delta.$

Note that $g(x) \neq f(x)$ only when a term that is present in f but not in g is made true by x. Thus,

$$\Pr_{x}(g(x) \neq f(x)] = \Pr_{x}(\exists T_{i} = 1 \text{ with } T_{i} \text{ is } > w) \le \delta.$$

This has ramifications with respect to concentration of and our ability to learn f.

Lemma 2.5. Suppose the Fourier spectrum of $g : \{0,1\}^n \to \{0,1\}$ is ϵ_1 -concentrated on \mathcal{F} such that $f : \{0,1\}^n \to \{0,1\}$ satisfies $||f - g||_2^2 \le \epsilon_2$. Then the Fourier spectrum of f is $2 \cdot (\epsilon_1 + \epsilon_2)$ concentrated on \mathcal{F} .

Proof. Using the fact that $(a + b)^2 \le 2(a^2 + b^2)$, we obtain for any $S \in \mathcal{F}$

$$\hat{f}(S)^2 \le 2\left(\hat{g}(S) + (\hat{f}(S) - \hat{g}(S))^2\right)$$

Summing over all $S \in \mathcal{F}$, we obtain

$$\sum_{S \in \mathcal{F}} \hat{f}(S) \le 2 \left(\sum_{S \in \mathcal{F}} \hat{g}(S)^2 + \sum_{S \in \mathcal{F}} (\hat{f}(S) - \hat{g}(S))^2 \right) \le 2(\epsilon_1 + \epsilon_2).$$

Corollary 2.6. Suppose $f : \{0,1\}^n \to \{0,1\}$ is computable by a size s DNF. Then $W^{\geq K}(f) \leq \epsilon$ for $K = O\left(\frac{1}{\epsilon}\log\left(\frac{s}{\epsilon}\right)\right)$.

Proof. Note that, by Lemma 2.4, f is $\epsilon/4$ -close to a g with width $\log(4s/\epsilon)$. This gives us $||f - g||_2^2 = \text{dist}(f,g) \le \epsilon/4$. Note that, by Corollary 2.2, the g is $\epsilon/4$ -concentrated for $\epsilon = 8\log(4s/\epsilon)/\epsilon$. Then, by Lemma 2.5, we get that

$$W^{\geq K}(f) \leq 2\left(\frac{\epsilon}{4} + \frac{\epsilon}{4}\right) = \epsilon$$

Corollary 2.7. *PAC-learning for size s DNF with sample complexity* $n^{O(1/\epsilon \log(s/\epsilon))}$

Proof. Again, this follows from using the Low-Degree Algorithm with $k = O(\log(s/\epsilon)/\epsilon)$.