CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 10: PAC learning from Fourier concentration
Lecturer: Eshan Chattopadhyay Scribe: Kevin Hua

1 Low degree algorithm

Recall that there are two models of PAC learning that we are considering in this class.

Random Example Model: we are given zi, fx)}_,, o~ {-1,1}"

And those two are amp ) v sV (@i f@))tiza { }
Query Model: we are given an oracle that answers any query of f

Our goal is to learn any f € F, where F is a concept class.
In other words, in any of these two models, we want to design a learning algorithm A that will
output h: {—1,1}" — {—1,1}, such that, with high probability, dist(h, f) = Pr[h # f] <e.

Theorem 1.1. Suppose for any f € F, W=2F[f] < n . Then, F is PAC-learnable with
1" T
S f(s)2 assume N<e/2
s>k

poly(n¥,1/€) samples.

The first step of proving this theorem is to approximate the low-degree fourier coefficients. To
do this, we need the subroutine below.

Subroutine: Estimate Fourier coefficients using FOURIER(s)
fr€1,61

Algorithm 1: FOURIER(S) ¢, s,

as defined '111 last lecture

—~—

1 Output f (S) € R, such that, with probability at least 1 — 41,

—~—

1£(S) = £(9)| < e

Note that we have independirit/samples {(z4, f(zi))}_,. And we supply FOURIER(S).¢, 5,

with these samples to generate f (S).

With a handy algorithm estimating any Fourier coefficients, our final algorithm is as follows.
The intuition is simple: we don’t have the leisure to estimate every Fourier coefficient as there are
exponentially many of them. However, given we know the high-degree Fourier coefficients are tiny,
we might well get by without estimating them.

Algorithm 2: A[low degree algorithm)]
1 Estimate f(S), VS C [n], |S| < k using FOURIER(S)

fre1,01
Dz

2 output sign(h(z)), where h(z)= Y  f(S)xs(z).
SCIn],IS|<k

Analysis:
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Assume all estimates in step 1 are “good” — — |f(S) — f(S)| < €1,VS C [n]

Note that by Union Bound, Pr[Ja bad estimate] < &; ( <”k) At the end, we are going to pick &y
so that this probability is some constant strictly less than 1.

Goal: we want to show dist(sign(h), f) = Pr[sign(h(z)) # f(z)] is small.

Let g(z) = f(x) — h(z). Note that when sign(h())  (2). 9(a)| = |f(x) ~ h(z)] > 1

Thus, we have that dist(sign(h), f) = Pr[sign(h(z)) # f(z)] < ||lgll2 = E[(f — h)?].

By Parseval’s Theorem,

lgll3 = (4(5))°

sC[n]

= Y AW
s:|S|<k

As g(x) = f(2) = h(@), §(S) = f(S) = h(S).
For |S| < k, by definition,

9(S)] = |£(S) — h(S)|
=1£(S) = f(9)|

< e (by assumption that the estimate f(S) is “good”)

For W=2k+1[g], as h(S) = 0 for |S| > k + 1, we have W*H1[g] = WFHL[f] <n < ¢/2.

Summing up the upper bounds for Y §(S)? and the one for W**+1[g], we get
|S|<k

. . n
distsign(n). ) < ol < () + /2

< <§ k‘) €1 +¢/2 (for g < 1) with probability > 1 — d; <§ k‘>

€

Now, setting € = ey ™ O(:%), 0 = O(nik), we get that with some positive constant
<k
probability, A outputs a h such that dist(h, f) < e. O

Note that sampling complexity of FOURIER is O(k"%
As we repeat FOURIER O(( )) times in A, we get the sampling complexity of A is O(M).

(n)) from last time.

2 Kushilevitz-Mansour Algorithm

Theorem 2.1. Suppose F is n-concentrated as follows: for any f € F, 3Ly = {s1,--+ ,sm},

st > f(s)2 > 1—mn. Then, F is e-PAC learnable in query model with sample complexity
SELf

1 .
poly(n, ¢, M), with n < 5.

First, suppose Ly is given to A.
Then we can estimate f(S),VS € L by outputting sign( ) F(s)xs(x)).
SELf
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Repeating the same analysis as for the low-degree algorithm, we can easily see that with

poly(n, 2, M) samples, dist(sign( > F(s)xs(x)), f) < e. Therefore, we are done if we can find
SGLf
Ly (efficiently). GOOD NEWS: Goldreich-Levin algorithm find the L,, for us!

3 Goldreich-Levin

Theorem 3.1. With query access to f and parameter 6, Goldreich-Levin outputs a set I:f. With
high probability, Ly satisfies the following two constraints:

(1)if S € Ly, |£(S)] = 5.
(2) if |[f(S)| =4, S €Ly

Notation: For any 0 < k <n, S C [k]

Bys:={T C[n]:TNIk] =S5}

W(Brs)= > f(T)?
TeBy s
Note that |Bys| = 2"* and By = 2l
Algorithm 3: Goldreich-Levin Algorithm
1 Set B = {BQ@}
1

collection of buckets

while 3B € B such that B contains at least 2 sets do
Suppose B = By, 5. Remove B from B.

Estimate W (Byp) and W (Bj) to accuracy %.

Add B; to B if B; is estimated with weight > % (We call B; “heavy” in this case).
7 end
8 Output B.

2
3
4 | Let By = Bgy1,5, B1 = Biq1,50{i4+1}-
5
6
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W(B,, @) =1

B, @

ORORONO

Figure 1: representation of buckets as a complete binary tree

Question: How many heavy leaves are there in the trees that can be included as part of the
output for Goldreich-Levin, as shown in Figure 17
3Answer: g%. Note that the leaves are disjoint buckets. Therefore, given the accuracy of the

algorithm is %, there are at most g% leaves buckets that can be included in the output.
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