
CS 6817: Special Topics in Complexity Theory Spring 2025

Lecture 10: PAC learning from Fourier concentration

Lecturer: Eshan Chattopadhyay Scribe: Kevin Hua

1 Low degree algorithm

Recall that there are two models of PAC learning that we are considering in this class.

And those two are

{
Random Example Model: we are given {(xi, f(xi))}ti=1, x ∼ {−1, 1}n

Query Model: we are given an oracle that answers any query of f
Our goal is to learn any f ∈ F , where F is a concept class.
In other words, in any of these two models, we want to design a learning algorithm A that will

output h : {−1, 1}n → {−1, 1}, such that, with high probability, dist(h, f) = Pr[h ̸= f] ≤ ϵ.

Theorem 1.1. Suppose for any f ∈ F , W≥k[f]
q∑

|s|≥k

f̂(s)2

≤ η
↑

assume η≤ϵ/2

. Then, F is PAC-learnable with

poly(nk, 1/ϵ) samples.

The first step of proving this theorem is to approximate the low-degree fourier coefficients. To
do this, we need the subroutine below.

Subroutine: Estimate Fourier coefficients using FOURIER(s)
f,ϵ1,δ1

Algorithm 1: FOURIER(S)f,ϵ1,δ1

1 Output

as defined in last lecture
↓

˜̂f(S) ∈ R, such that, with probability at least 1− δ1,

|˜̂f(S)− f̂(S)| < ϵ1.

Note that we have independent samples {(xi, f(xi))}ti=1. And we supply FOURIER(s)f,ϵ1,δ1

with these samples to generate ˜̂f(S).
With a handy algorithm estimating any Fourier coefficients, our final algorithm is as follows.

The intuition is simple: we don’t have the leisure to estimate every Fourier coefficient as there are
exponentially many of them. However, given we know the high-degree Fourier coefficients are tiny,
we might well get by without estimating them.

Algorithm 2: A[low degree algorithm]

1 Estimate f̂(S), ∀S ⊆ [n], |S| ≤ k using FOURIER(S)
f,ϵ1,δ1

2 output sign(h(x)),where h(x) =
∑

S⊆[n],|S|≤k

˜̂f(S)χS(x).

Analysis:

1

Lecture 10: PAC learning from Fourier concentration 2

Assume all estimates in step 1 are “good” −− |˜̂f(S)− f̂(S)| ≤ ϵ1,∀S ⊆ [n]
Note that by Union Bound, Pr[∃a bad estimate] ≤ δ1

(
n
≤k

)
. At the end, we are going to pick δ1

so that this probability is some constant strictly less than 1.
Goal: we want to show dist(sign(h), f) = Pr[sign(h(x)) ̸= f(x)] is small.
Let g(x) = f(x)− h(x). Note that when sign(h(x)) ̸= f(x), |g(x)| = |f(x)− h(x)| > 1
Thus, we have that dist(sign(h), f) = Pr[sign(h(x)) ̸= f(x)] ≤ ||g||2 = E[(f − h)2].
By Parseval’s Theorem,

||g||22 =
∑
s⊆[n]

(ĝ(S))2

=
∑

s:|S|≤k

ĝ(S)2 +W≥k+1[g]

As g(x) = f(x)− h(x), ĝ(S) = f̂(S)− ĥ(S).
For |S| ≤ k, by definition,

|ĝ(S)| = |f̂(S)− ĥ(S)|

= |f̂(S)− ˜̂f(S)|

≤ ϵ1 (by assumption that the estimate ˜̂f(S) is “good”)

For W≥k+1[g], as h(S) = 0 for |S| ≥ k + 1, we have Wk+1[g] = Wk+1[f] ≤ η ≤ ϵ/2.
Summing up the upper bounds for

∑
|S|≤k

ĝ(S)2 and the one for Wk+1[g], we get

dist(sign(h), f) ≤ ||g||22 ≤
(

n

≤ k

)
ϵ21 + ϵ/2

≤
(

n

≤ k

)
ϵ1 + ϵ/2 (for ϵ1 ≤ 1) with probability ≥ 1− δ1

(
n

≤ k

)
.

Now, setting ϵ1 = ϵ
2(n

≤k)
∼ O(ϵ

nk), δ1 = O(1
nk), we get that with some positive constant

probability, A outputs a h such that dist(h, f) ≤ ϵ. □

Note that sampling complexity of FOURIER is O(kn
2k

ϵ2
log(n)) from last time.

As we repeat FOURIERO(
(

n
≤k

)
) times inA, we get the sampling complexity ofA isO(k·n

3k logn
ϵ2

).

2 Kushilevitz-Mansour Algorithm

Theorem 2.1. Suppose F is η-concentrated as follows: for any f ∈ F , ∃Lf = {s1, · · · , sM},
s.t.

∑
s∈Lf

f̂(s)2 ≥ 1 − η. Then, F is ϵ-PAC learnable in query model with sample complexity

poly(n, 1ϵ ,M), with η ≤ ϵ
2 .

First, suppose Lf is given to A.

Then we can estimate f̂(S), ∀S ∈ Lf by outputting sign(
∑

s∈Lf

˜̂
f(s)χs(x)).

Lecture 10: PAC learning from Fourier concentration 3

Repeating the same analysis as for the low-degree algorithm, we can easily see that with

poly(n, 1ϵ ,M) samples, dist(sign(
∑

s∈Lf

˜̂
f(s)χs(x)), f) ≤ ϵ. Therefore, we are done if we can find

Lf (efficiently). GOOD NEWS: Goldreich-Levin algorithm find the Lp for us!

3 Goldreich-Levin

Theorem 3.1. With query access to f and parameter δ, Goldreich-Levin outputs a set L̃f . With
high probability, L̃f satisfies the following two constraints:

(1) if S ∈ L̃f , |f̂(S)| ≥ δ
2 .

(2) if |f̂(S)| ≥ δ, S ∈ L̃f .

Notation: For any 0 ≤ k ≤ n, S ⊆ [k]

Bk,S := {T ⊆ [n] : T ∩ [k] = S}

W (Bk,S) =
∑

T∈Bk,S

f̂(T)2

Note that |Bk,S | = 2n−k and B0,∅ = 2[n].

Algorithm 3: Goldreich-Levin Algorithm

1 Set B
↑

collection of buckets

= {B0,∅}

2 while ∃B ∈ B such that B contains at least 2 sets do
3 Suppose B = Bk,S . Remove B from B.
4 Let B0 = Bk+1,S , B1 = Bk+1,S∪{i+1}.

5 Estimate W (B0) and W (B1) to accuracy δ2

4 .

6 Add Bi to B if Bi is estimated with weight ≥ δ2

2 (We call Bi “heavy” in this case).

7 end
8 Output B.

Lecture 10: PAC learning from Fourier concentration 4

Figure 1: representation of buckets as a complete binary tree

Question: How many heavy leaves are there in the trees that can be included as part of the
output for Goldreich-Levin, as shown in Figure 1?

3Answer: 4
δ2
. Note that the leaves are disjoint buckets. Therefore, given the accuracy of the

algorithm is δ2

4 , there are at most 4
δ2

leaves buckets that can be included in the output.

	Low degree algorithm
	Kushilevitz-Mansour Algorithm
	Goldreich-Levin

