CS 6817: Special Topics in Complexity Theory

Spring 2025

Lecture 10: PAC learning from Fourier concentration

Lecturer: Eshan Chattopadhyay

Scribe: Kevin Hua

Low degree algorithm 1

Recall that there are two models of *PAC learning* that we are considering in this class.

And those two are $\begin{cases} \text{Random Example Model: we are given} & \{(x_i, f(x_i))\}_{i=1}^t, x \sim \{-1, 1\}^n \\ \text{Query Model: we are given an oracle that answers any query of } f \\ \text{Our goal is to learn any } f \in \mathcal{F}, \text{ where } \mathcal{F} \text{ is a concept class.} \end{cases}$

In other words, in any of these two models, we want to design a learning algorithm \mathcal{A} that will output $h : \{-1, 1\}^n \to \{-1, 1\}$, such that, with high probability, $\operatorname{dist}(h, f) = \Pr[h \neq f] \leq \epsilon$.

Theorem 1.1. Suppose for any $f \in \mathcal{F}$, $W^{\geq k}[f] \leq \eta$. Then, \mathcal{F} is PAC-learnable with $\sum_{|s|\geq k} \hat{f}(s)^2 = \operatorname{assume}^{\uparrow} \eta \leq \epsilon/2$

 $poly(n^k, 1/\epsilon)$ samples.

The first step of proving this theorem is to approximate the low-degree fourier coefficients. To do this, we need the subroutine below.

Subroutine: Estimate Fourier coefficients using FOURIER(s)

 f,ϵ_1,δ_1

Algorithm 1: $FOURIER(S)$	$f_{f,\epsilon_1,\delta_1}$
as defined in last lecture 1 Output $\widehat{\widehat{f}(S)}$ \in $ \widehat{\widehat{f}(S)} - \widehat{f}(S) < \epsilon_1.$	\mathbb{R} , such that, with probability at least $1 - \delta_1$,

Note that we have independent samples $\{(x_i, f(x_i))\}_{i=1}^t$. And we supply $FOURIER(s)_{f,\epsilon_1,\delta_1}$ with these samples to generate $\hat{f}(S)$.

With a handy algorithm estimating any Fourier coefficients, our final algorithm is as follows. The intuition is simple: we don't have the leisure to estimate every Fourier coefficient as there are exponentially many of them. However, given we know the high-degree Fourier coefficients are tiny, we might well get by without estimating them.

Algorithm 2: $\mathcal{A}[\text{low degree algorithm}]$ 1 Estimate $\hat{f}(S), \forall S \subseteq [n], |S| \leq k$ using FOURIER(S) $_{f,\epsilon_1,\delta_1}$ **2** output sign(h(x)), where $h(x) = \sum_{S \subseteq [n], |S| \le k} \widetilde{\widehat{f}(S)} \chi_S(x).$

Analysis:

Assume all estimates in step 1 are "good" $- |\hat{f}(S) - \hat{f}(S)| \leq \epsilon_1, \forall S \subseteq [n]$ Note that by Union Bound, $\Pr[\exists a \text{ bad estimate}] \leq \delta_1 \binom{n}{\leq k}$. At the end, we are going to pick δ_1 so that this probability is some constant strictly less than 1.

Goal: we want to show dist(sign(h), f) = Pr[sign(h(x)) \neq f(x)] is small. Let g(x) = f(x) - h(x). Note that when sign(h(x)) $\neq f(x)$, |g(x)| = |f(x) - h(x)| > 1Thus, we have that dist(sign(h), f) = Pr[sign(h(x)) $\neq f(x)$] $\leq ||g||_2 = \mathbf{E}[(f - h)^2]$. By Parseval's Theorem,

$$\begin{split} ||g||_{2}^{2} &= \sum_{s \subseteq [n]} (\hat{g}(S))^{2} \\ &= \sum_{s:|S| \le k} \hat{g}(S)^{2} + \mathbf{W}^{\ge k+1}[g] \end{split}$$

As g(x) = f(x) - h(x), $\hat{g}(S) = \hat{f}(S) - \hat{h}(S)$. For $|S| \le k$, by definition,

$$\hat{g}(S)| = |\hat{f}(S) - \hat{h}(S)|$$
$$= |\hat{f}(S) - \widetilde{\hat{f}(S)}|$$

 $\leq \epsilon_1$ (by assumption that the estimate $\hat{f}(S)$ is "good")

For $\mathbf{W}^{\geq k+1}[g]$, as h(S) = 0 for $|S| \geq k+1$, we have $\mathbf{W}^{k+1}[g] = \mathbf{W}^{k+1}[f] \leq \eta \leq \epsilon/2$. Summing up the upper bounds for $\sum_{|S|\leq k} \hat{g}(S)^2$ and the one for $\mathbf{W}^{k+1}[g]$, we get

dist(sign(h), f)
$$\leq ||g||_2^2 \leq \binom{n}{\leq k} \epsilon_1^2 + \epsilon/2$$

 $\leq \binom{n}{\leq k} \epsilon_1 + \epsilon/2 \quad \text{(for } \epsilon_1 \leq 1\text{) with probability} \geq 1 - \delta_1 \binom{n}{\leq k}.$

Now, setting $\epsilon_1 = \frac{\epsilon}{2\binom{n}{\leq k}} \sim O(\frac{\epsilon}{n^k})$, $\delta_1 = O(\frac{1}{n^k})$, we get that with some positive constant probability, \mathcal{A} outputs a h such that $\operatorname{dist}(h, f) \leq \epsilon$.

Note that sampling complexity of FOURIER is $O(\frac{kn^{2k}}{\epsilon^2}\log(n))$ from last time. As we repeat FOURIER $O(\binom{n}{\leq k})$ times in \mathcal{A} , we get the sampling complexity of \mathcal{A} is $O(\frac{k \cdot n^{3k}\log n}{\epsilon^2})$.

2 Kushilevitz-Mansour Algorithm

Theorem 2.1. Suppose \mathcal{F} is η -concentrated as follows: for any $f \in \mathcal{F}$, $\exists L_f = \{s_1, \dots, s_M\}$, s.t. $\sum_{s \in L_f} \hat{f}(s)^2 \geq 1 - \eta$. Then, \mathcal{F} is ϵ -PAC learnable in query model with sample complexity poly $(n, \frac{1}{\epsilon}, M)$, with $\eta \leq \frac{\epsilon}{2}$.

First, suppose L_f is given to \mathcal{A} .

Then we can estimate $\hat{f}(S), \forall S \in L_f$ by outputting sign $(\sum_{s \in L_f} \widetilde{\hat{f}(s)}\chi_s(x))$.

Repeating the same analysis as for the low-degree algorithm, we can easily see that with $\operatorname{poly}(n, \frac{1}{\epsilon}, M)$ samples, $\operatorname{dist}(\operatorname{sign}(\sum_{s \in L_f} \widehat{f}(s)\chi_s(x)), f) \leq \epsilon$. Therefore, we are done if we can find $L_f(\text{efficiently})$. GOOD NEWS: Goldreich-Levin algorithm find the L_p for us!

3 Goldreich-Levin

Theorem 3.1. With query access to f and parameter δ , Goldreich-Levin outputs a set L_f . With high probability, \tilde{L}_f satisfies the following two constraints:

- (1) if $S \in \tilde{L}_f$, $|\hat{f}(S)| \ge \frac{\delta}{2}$.
- (2) if $|\hat{f}(S)| \ge \delta$, $S \in \tilde{L}_f$.

<u>Notation</u>: For any $0 \le k \le n, S \subseteq [k]$

$$B_{k,S} := \{T \subseteq [n] : T \cap [k] = S\}$$
$$W(B_{k,S}) = \sum_{T \in B_{k,S}} \hat{f}(T)^2$$

Note that $|B_{k,S}| = 2^{n-k}$ and $B_{0,\emptyset} = 2^{[n]}$.

Algorithm 3: Goldreich-Levin Algorithm

1 Set $\mathcal{B}_{\substack{\uparrow\\ \text{collection of buckets}}} = \{B_{0,\emptyset}\}$ collection of buckets 2 while $\exists B \in \mathcal{B}$ such that B contains at least 2 sets do 3 | Suppose $B = B_{k,S}$. Remove B from \mathcal{B} . 4 | Let $B_0 = B_{k+1,S}$, $B_1 = B_{k+1,S\cup\{i+1\}}$. 5 | Estimate $W(B_0)$ and $W(B_1)$ to accuracy $\frac{\delta^2}{4}$. 6 | Add B_i to \mathcal{B} if B_i is estimated with weight $\geq \frac{\delta^2}{2}$ (We call B_i "heavy" in this case). 7 end 8 Output \mathcal{B} .

Figure 1: representation of buckets as a complete binary tree

Question: How many heavy leaves are there in the trees that can be included as part of the output for *Goldreich-Levin*, as shown in Figure 1?

<u>3Answer</u>: $\frac{4}{\delta^2}$. Note that the leaves are disjoint buckets. Therefore, given the accuracy of the algorithm is $\frac{\delta^2}{4}$, there are at most $\frac{4}{\delta^2}$ leaves buckets that can be included in the output.