CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 9: Sep 20, 2022

Lecturer: Eshan Chattopadhyay

In today's lecture, we continue our study of error-correcting codes.

1 The Singleton Bound

We establish a simple trade-off between dimension and distance that any linear code satisfies.

Theorem 1.1. Any $[n, k, d]_q$ code must satisfy

$$k+d \le n+1 \tag{1}$$

Proof: Let C be an $[n, k, d]_q$ code. Let code C_1 be almost the same as C except with the first symbol removed from each codeword. The block size will now be of size n - 1. The Hamming distance will now be at least d - 1. This is because we are only removing one bit (one less possible differing bit) from the codewords produced by C.

$$C^1 \to [n-1,k, \ge d-1]_q \tag{2}$$

We can now remove the first *i* symbols to produce code C^i

$$C^i \to [n-i, k, \le d-i] \tag{3}$$

Choose i = d - 1

$$C^{d-1} \to [n - (d-1), k, 1]$$
 (4)

The block size must be greater than or equal to the dimension of the code which gives us the singleton bound.

$$n - (d - 1) \ge k$$

$$k + d \le n + 1$$
(5)

This makes sense conceptually because as the number of messages increases, the more codewords you need to pack into \mathbb{F}^n , and thus the distance must decrease.

2 Welch-Berlekamp Algorithm

Recall the Reed Solomon code: given a message $\vec{a} \in \mathbb{F}^k$, we view it as the polynomial $P_{\vec{a}}(x) = \sum_{i=0}^{k-1} a_i x^i$. Fix $S = \{\varphi_1, \varphi_2, \dots, \varphi_n\}$, and the codeword is produced as follows

$$a = (a_1, a_2, \dots, a_{k-1}) \to (P_a(\varphi_1), P_a(\varphi_2), \dots, P_a(\varphi_n)) = c \in \mathbb{F}^n$$

$$\tag{6}$$

The codeword is now sent through a noisy channel that makes e errors (i.e., changes at most e symbols).

$$c \xrightarrow{noisy \ channel} c' \in \mathbb{F}^n$$

Scribe: Kevin Yu

We can represent c' as a function f that evaluates to the corresponding symbols in c' on all the points in S

$$f: \mathbb{F} \to \mathbb{F} \quad \forall i \in [n], \ f(\varphi_i) = c'_i$$

A key definition towards developing the algorithm for error-correcting RS codes is the following:

Definition 2.1. An Error-Locator Polynomial is a polynomial E is such that

$$E(x) = 0 \iff f(x) \neq P_{\vec{a}}(x)$$

In other words, E has a root whenever f and $P_{\vec{a}}$ differ.

Observation 2.2. There exists a polynomial E of degree equal to e (the number of errors).

Proof: Let $\{\beta_1, \beta_2, ..., \beta_e\}$ be the locations of the errors (all x where $f(x) \neq P_{\vec{a}}(x)$)

$$E(x) = \prod_{i=1}^{e} (x - \beta_i)$$

The following is a simple but key identity.

Observation 2.3. $\forall x \in S, f(x)E(x) = P_{\vec{a}}(x)E(x)$

When f(x) and $P_{\vec{a}}(x)$ differ, E(x) = 0 so the equality holds. When f(x) and $P_{\vec{a}}(x)$ agree, the equality also clearly holds.

Now that we have proven the existence of E let

$$E(x) = \sum_{i=1}^{e} \gamma_i x^i$$
$$P_{\vec{a}}(x) = \sum_{i=0}^{k-1} a_i x^i$$

We can now construct a system of equations by plugging in the values in S.

$$\forall x \in S, \quad f(x)E(x) = P_{\vec{a}}E(x) \tag{7}$$

Notice that this is a quadratic system of equations, and in general this is NP-hard. There is a clever way to avoid this that will result in an efficient algorithm.

The Welch-Berlekamp Algorithm On input c' or f, let $N(x) = \sum_{i=1}^{e+k-1} n_i x_i$.

Let
$$E(x) = \sum_{i=0}^{e} \gamma_i x_i$$
.

Solve for $\{n_i, \gamma_i\}$ in the following system of equations

$$\forall x \in S, \quad f(x)E(x) = N(x) \tag{8}$$

Output p = N/E.

Proof: We start off by observing that by choosing $E^* = \prod_{i=1}^{e} (x - \beta_i)$ and $N^* = P_{\vec{a}}(x)E(x)$,

indeed N^*, E^* satisfy $\forall x \in S$, $f(x)E^*(x) = N^*(x)$.

Thus, if we can show that for any (N_1, E_1) and (N_2, E_2) that satisfy

$$f(x)E(x) = N(x) \tag{9}$$

then $N_1/E_1 = N_2/E_2$, the correctness of the algorithm will follow.

Let $Q \equiv N_1(x)E_2(x) - N_2(x)E_1(x)$.

$$\forall y \in S, \quad N_1(y)E_2(y) = f(y)E_1(y)E_2(y) = E_1(y)f(y)E_2(y) = E_1(y)N_2(y) \tag{10}$$

All $x \in S$ are roots of Q (recall |S| = n). Additionally, we note that $\deg(Q) \leq 2e + k - 1$.

Recall that the Reed Solomon code has distance d = n - (k - 1), and thus combinatorially we can only correct codes up with e less than $\frac{d}{2}$. So $e < \frac{n - (k - 1)}{2}$, or 2e + k - 1 < n.

$$\deg(Q) \le 2e + k - 1 < n \tag{11}$$

Q has n roots but has degree less than n so Q must be the zero polynomial. This means $N_1/E_1 = N_2/E_2$, which finishes the proof of correctness.

3 Reed-Muller Codes

We now introduce a multivariate version of the Reed Solomon code.

Definition 3.1. The Reed-Muller code with m variables and degree r, $RS(m,r)_2$ is constructed using a multivariate polynomial of at degree at most r.

$$P(x_1, x_2, ..., x_m) = \sum_{I \subseteq [m], |I| \le r} a_I x^I,$$
where $x^I = \prod_{i \in I} x_i$
and $a_I \in \mathbb{F}_2$

$$(12)$$

The number of coefficients is

$$\sum_{i=0}^{r} \binom{m}{i} = \binom{m}{\leq r}$$

The message is the vector of coefficients. To encode a message, we evaluate P at all points of \mathbb{F}_2^m . Thus, the block length of the code is 2^m . Note that the Reed-Muller code is linear.

The Reed-Muller code is a $[2^m, \binom{m}{\leq r}, d]$ code, where we will see later that $d = 2^{m-r}$.

Definition 3.2. The Hadamard Code is a special case of a Reed Muller Code, where we set r = 1.

Thus, the Hadamard Code is a $[2^m, m, 2^{m-1}]$ code. It is not hard to see that our construction of a pairwise independent distribution (from an earlier class) is simply to output a random codeword of the Hadamard code.