
CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 9: Sep 20, 2022

Lecturer: Eshan Chattopadhyay Scribe: Kevin Yu

In today’s lecture, we continue our study of error-correcting codes.

1 The Singleton Bound

We establish a simple trade-off between dimension and distance that any linear code satisfies.

Theorem 1.1. Any [n, k, d]q code must satisfy

k + d ≤ n+ 1 (1)

Proof: Let C be an [n, k, d]q code. Let code C1 be almost the same as C except with the first
symbol removed from each codeword. The block size will now be of size n − 1. The Hamming
distance will now be at least d− 1. This is because we are only removing one bit (one less possible
differing bit) from the codewords produced by C.

C1 → [n− 1, k,≥ d− 1]q (2)

We can now remove the first i symbols to produce code Ci

Ci → [n− i, k,≤ d− i] (3)

Choose i = d− 1
Cd−1 → [n− (d− 1), k, 1] (4)

The block size must be greater than or equal to the dimension of the code which gives us the
singleton bound.

n− (d− 1) ≥ k
k + d ≤ n+ 1 (5)

This makes sense conceptually because as the number of messages increases, the more codewords
you need to pack into Fn, and thus the distance must decrease.

2 Welch-Berlekamp Algorithm

Recall the Reed Solomon code: given a message ~a ∈ Fk, we view it as the polynomial P~a(x) =∑k−1
i=0 aix

i. Fix S = {ϕ1, ϕ2, ...ϕn}, and the codeword is produced as follows

a = (a1, a2, ..., ak−1)→ (Pa(ϕ1), Pa(ϕ2), ..., Pa(ϕn)) = c ∈ Fn (6)

The codeword is now sent through a noisy channel that makes e errors (i.e., changes at most e
symbols).

c
noisy channel−−−−−−−−→ c′ ∈ Fn

1

Lecture 9: Sep 20, 2022 2

We can represent c′ as a function f that evaluates to the corresponding symbols in c′ on all the
points in S

f : F→ F ∀i ∈ [n], f(ϕi) = c′i

A key definition towards developing the algorithm for error-correcting RS codes is the following:

Definition 2.1. An Error-Locator Polynomial is a polynomial E is such that

E(x) = 0 ⇐⇒ f(x) 6= P~a(x)

In other words, E has a root whenever f and P~a differ.

Observation 2.2. There exists a polynomial E of degree equal to e (the number of errors).

Proof: Let {β1, β2, ..., βe} be the locations of the errors (all x where f(x) 6= P~a(x))

E(x) =

e∏
i=1

(x− βi)

The following is a simple but key identity.

Observation 2.3. ∀x ∈ S, f(x)E(x) = P~a(x)E(x)

When f(x) and P~a(x) differ, E(x) = 0 so the equality holds. When f(x) and P~a(x) agree, the
equality also clearly holds.

Now that we have proven the existence of E let

E(x) =
e∑

i=1

γix
i

P~a(x) =

k−1∑
i=0

aix
i

We can now construct a sytem of equations by plugging in the values in S.

∀x ∈ S, f(x)E(x) = P~aE(x) (7)

Notice that this is a quadratic system of equations, and in general this is NP-hard. There is a
clever way to avoid this that will result in an efficient algorithm.

The Welch-Berlekamp Algorithm
On input c′ or f , let N(x) =

∑e+k−1
i=1 nixi.

Let E(x) =
∑e

i=0 γixi.

Solve for {ni, γi} in the following system of equations

∀x ∈ S, f(x)E(x) = N(x) (8)

Output p = N/E.

Proof: We start off by observing that by choosing E∗ =
∏e

i=1(x − βi) and N∗ = P~a(x)E(x),

Lecture 9: Sep 20, 2022 3

indeed N∗, E∗ satisfy ∀x ∈ S, f(x)E∗(x) = N∗(x).

Thus, if we can show that for any (N1, E1) and (N2, E2) that satisfy

f(x)E(x) = N(x) (9)

then N1/E1 = N2/E2, the correctness of the algorithm will follow.

Let Q ≡ N1(x)E2(x)−N2(x)E1(x).

∀y ∈ S, N1(y)E2(y) = f(y)E1(y)E2(y) = E1(y)f(y)E2(y) = E1(y)N2(y) (10)

All x ∈ S are roots of Q (recall |S| = n). Additionally, we note that deg(Q) ≤ 2e+ k − 1.

Recall that the Reed Solomon code has distance d = n − (k − 1), and thus combinatorially we

can only correct codes up with e less than d
2 . So e < n−(k−1)

2 , or 2e+ k − 1 < n.

deg(Q) ≤ 2e+ k − 1 < n (11)

Q has n roots but has degree less than n so Q must be the zero polynomial. This means N1/E1 =
N2/E2, which finishes the proof of correctness.

3 Reed-Muller Codes

We now introduce a multivariate version of the Reed Solomon code.

Definition 3.1. The Reed-Muller code with m variables and degree r, RS(m, r)2 is constructed
using a multivariate polynomial of at degree at most r.

P (x1, x2, ..., xm) =
∑

I⊆[m],|I|≤r

aIx
I , (12)

where xI =
∏
i∈I

xi

and aI ∈ F2

The number of coefficients is
r∑

i=0

(
m

i

)
=

(
m

≤ r

)
The message is the vector of coefficients. To encode a message, we evaluate P at all points of Fm

2 .
Thus, the block length of the code is 2m. Note that the Reed-Muller code is linear.

The Reed-Muller code is a [2m,
(
m
≤r
)
, d] code, where we will see later that d = 2m−r.

Definition 3.2. The Hadamard Code is a special case of a Reed Muller Code, where we set r = 1.

Thus, the Hadamard Code is a [2m,m, 2m−1] code. It is not hard to see that our construction of
a pairwise independent distribution (from an earlier class) is simply to output a random codeword
of the Hadamard code.

	The Singleton Bound
	Welch-Berlekamp Algorithm
	Reed-Muller Codes

