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1 Fundamentals of Error Correcting Codes

Alice wants to transmit a message m ∈ M over a noisy channel to Bob. To ensure that Bob is
able to recover the message m, instead of sending m over the channel, she sends c = enc(m). On
the other side of the channel, Bob receives c′, the corrupted version of c. He then uses the error
correction algorithm to recover c and runs decode to recover dec(c) = m.

m ∈ M
encode−−−−→ c = enc(m)

flip ≤ r bit−−−−−−−−→
noisy channel

c′
error correct−−−−−−−→ c

decode−−−−→ m = dec(c)

It is common to refer to the image of enc as the code.

Remark 1.1. The noisy channel can be modelled as a stochastic process which changes each input
into the channel with probability p. However, in theoretical computer science we generally consider
the worst case (adversarial) setting.

Definition 1.2. A code C is a (n, k, d)q code if C ⊆ Σn where |Σ| = q, k = logq(|M |), and
x, y ∈ C ∆(x, y) ≥ d.

Remark 1.3. n is refereed to as the block length, k as the dimension, and d as the distance. c ∈ C
is refereed to as a codeword.

Claim 1.4. It is possible to correct r ≤ d−1
2 errors using a (n, k, d)q code C.

Error Correction Alg: output c∗ ∈ C which minimizes ∆(c∗, c′) where c′ is the corrupted message.
We will now show that c∗ = c. Suppose c∗ ̸= c. Then by the triangle inequality

∆(c∗, c) ≤ ∆(c∗, c′) + ∆(c′, c)

∆(c′, c) ≤ r since the channel flips at most r bits. ∆(c∗, c′) ≤ r since ∆(c∗, c′) = minx∆(x, c′) ≤
∆(c, c′) ≤ r. Therefore

∆(c∗, c′) + ∆(c′, c) ≤ r + r =
d− 1

2
+

d− 1

2
= d− 1 < d

This implies that there are two distinct codewords c and c∗ whose distance is less than d. This
contradicts the fact that C is a (n, k, d)q code. Therefore, c = c∗.

Observation 1.5. We have shown that the proposed error correction algorithm is correct but this
is still a sub-optimal result, as we have not shown that it is efficient. Showing that error correction
is efficient may be challenging.

Geometrically, Our error correction algorithm draws a ball of radius d−1
2 around c′ and outputs

the codeword in that ball. In our case, we are guaranteed that there will only be one codeword in
that ball. This is what is refereed to as a uniquely decodeble code. However, if we relax that, we
may be able to create an algorithm that looks at a polynomial number of codewords in a ball of
radius d−1

2 around c′ and chooses a reasonable one.
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2 Existence of Good Codes

Definition 2.1. The rate of an (n, k, d)q code is r = k
n .

Definition 2.2. The relative distance of an (n, k, d)q code is δ = d
n

Notice that the rate of a code is always ≤ 1.
We consider a code ”good” if rate and relative distance are constants (Ω(1)).

Theorem 2.3. There exist good codes. More formally, ∀n ∈ N,∃(n, k, d)2 codes with d
n ,

k
n = Ω(1).

We will prove this by the probabilistic method. We will show that there is constant rate (r)
and constant relative distance (δ) such that for all n, a random code with those dimension k = nr
has a non-zero probability of having distance nδ.

K = 2k. Pick v1, v2, . . . , vK randomly and independently from {0, 1}n. Notice that

E[∆(vi, vj)] =
n

2

Since each bit of vi and each bit of vj is chosen at random, the expected value of the distance
of the bits is 1

2 . Thus the expected value of the sum of the distance of the bits is n
2 .

We are interested in the event that our code is bad, that the distance between 2 vs is low. We
will refer to the event ∆(vi, vj) <

n
2 (1 − ϵ) as BADij . We can use the Chernoff bound to bound

the probability of such an event

P[BADij ] = P[∆(vi, vj) <
n

2
(1− ϵ)] ≤ 2−Ω(ϵ2n)

The code is bad if any of the codewords are too close to each other, in other words, if any
BADij event occurs. Thus the probability that a code is bad is

P[
⋃
i ̸=j

BADij ]

By the union bound we have

P[
⋃
i ̸=j

BADij ] ≤
(
K

2

)
2−Ω(ϵ2n)

We merely need to find k such that
(
K
2

)
2−Ω(ϵ2n) < 1. Since K2 >

(
K
2

)
, it suffices to find k such

that K22−Ω(ϵ2n) < 1.

K22−Ω(ϵ2n) < 1 ⇐⇒ 22k2−Ω(ϵ2n) < 1 ⇐⇒ k = c′′(ϵ)n

Where c′′ is some function of ϵ. We have shown the rate is c′′(ϵ) = Ω(1).
The distance of the code is 1−ϵ

2 n since no two codewords have distance greater than n
2 (1 − ϵ).

This tells us that the relative rate is 1−ϵ
2 = Ω(1)
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3 Reed-Solomon Codes

Reed-Solomon codes are (n, k, d)q codes where q ≥ n and Σ = Fq. The Reed-Solomon code with
block length n and dimension k, denoted RSn,k is a subset of F

n. We will now provide a construction
of RSn,k.

Construction 3.1. Fix S = {α1, α2, . . . , αn} ⊆ F. To encode the message ā = (a1, a2, . . . , ak−1

where ai ∈ F, construct the polynomial Pā(x) =
∑k−1

i=0 aixi. The codeword Cā = (Pā(α1), Pā(α2), . . . , Pā(αn)).

In this construction S does not depend on the message, it is fixed.

Question 1. What is the distance of RSn,k? In other words, what is the closest 2 codewords in
RSn,k can be?

This can be framed as an optimization problem:

d = min
ā̸=b̄

∆(Cā, Cb̄) = min
ā̸=b̄

|{x ∈ S|Pā(x) ̸= Pb̄(x)}|

If Pā(x) = Pb̄(x), then Pā(x) − Pb̄(x) has a root at x. Since the degree of Pā(x) − Pb̄(x) is
at most k − 1, and Pā(x) − Pb̄(x) has at most k − 1 roots. Thus, there are at most k − 1 values
for x such that Pā(x) = Pb̄(x), and always at least n − (k − 1) = n − k + 1 values of x such that
Pā(x) ̸= Pb̄(x). Therefore

d = min
ā̸=b̄

∆(Cā, Cb̄) = min
ā̸=b̄

|{x ∈ S|Pā(x) ̸= Pb̄(x)}| ≥ n− k + 1

Remark 3.2. This is actually the best distance that can be achieved (via the well-known Singleton
bound).

Question 2. Can RSn,k be used to get good binary codes?

RSn,k encodes field elements into field elements. But what if we want to transmit messages in
binary (q = F2)? Simply represent the field elements using binary. x ∈ Fq can be represented using
log2(q) bits. Thus the encode function goes from having signature enc : Fk

q → Fn
q , to having the

signature enc : {0, 1}k∗log2(q) → {0, 1}n∗log2(q)
Notice that the distance of the code remains unchanged but the relative distance δ = n−k+1

n∗log2(n) ≈
1

log2(n)
decreases. Intuitively, the problem is that a flip of any of the bits in the encoding of a field

element results in it being turned into a different field element. Ideally, we want to have to flip
many of the bits in an encoding of a field element to turn it into a different element. But we already
know how to achieve that: error correcting codes! We will send each binary encoding of a field
element using an optimal error correcting code (encoding just log n bits). Consequently, one can
show that this leads to constant relative distance.

4 Linear Codes

Definition 4.1. C ⊆ Fn is a linear code if C is a linear subspace.

Linear codes are denoted with square brackets, [n, k, d]q. In this case k is the dimension of C
and q = |F|.

Definition 4.2. The Hamming weight of a codeword c is the number of non-zero symbols in the
codeword
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We note that the distance d = min weight codeword in C.
Notice that this is a natural and equivalent definition of distance since the minimum distance

between any two codewords is the same the the min weight over all code words. This is because
∆(c1, c2) = ∆(c1 − c2, 0). Since C is is linear and c1, c2 ∈ C, c1 − c2 ∈ C. Call c1 − c2 the codeword
c3. thus ∆(c1, c2) = ∆(c1 − c2, 0) = ∆(c3, 0) = weight(c3).

Remark 4.3. One can show that good linear codes exist by using the probabilistic method.

Claim 4.4. Reed-Solomon codes are linear.

The fact that the sum of two codewords is another codeword is follows easily from Pā+Pb̄ = Pā+b̄.
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