CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 7: Sep 13, 2022
Lecturer: Eshan Chattopadhyay Scribe: Noam Ringach

1 Introduction

In this lecture, we will see the connection between PRGs and e-biased spaces, and we will begin
building up our knowledge of algebraic error-correcting codes to eventually see their connection to
PRGs as well.

2 e-biased spaces and PARITY

Here, we will connect PRGs to a class of distributions called e-biased spaces/distributions and see
their dual view as exactly the PRGs that fool languages in PARITY. Before introducing e-biased
distributions, we need to understand the Boolean function class PARITY.

Definition 2.1 (The class PARITY). The Boolean funciton class PARITYis the class of decision
problems solvable by a nondeterministic polynomial-time Turing machine where the acceptance con-
dition is that the number of accepting paths is odd (i.e., their parity is equal to 1). Another way
of viewing PARITY s as the set of functions F = |, ey Fn where each F,, is the set of all parity
functions on n elements. Explicitly, we can write

Fn = {xs :{0,1}" = {0,1} | VS C [n]}

where x g is the parity function on a subset of indices defined as

xg(z) = @mz

€S

Alternatively, instead of taking the parity directly we can simply do addition in F5 and define

Now, recall from previous lectures that we can define a PRG by the class of functions that it
fools. In the context of PARITY, we will see that the PRGs that fool PARITYare exactly those that
are also e-biased distributions! We now proceed to define these distributions and give an explicity
construction of such PRGs.

Definition 2.2 (e-biased space). Let U, be the uniform distribution on n bits. An e-biased
space/distribution (also referred to as a small-bias sample space) is a distribution D on {0,1}"
such that for all S C [n] we have

B [xs(a)]

— E <e.
E E [xs(@)]| <

In other words, D is a distribution that fools all parity functions.

Lecture 7: Sep 13, 2022 2

We can obtain a dual view of an e-biased distribution by considering D to be the output of a
PRG G,, : {0,1}*("%) — {0,1}" such that

E @] = B Ds(@u)]) <<

We would say that such a PRG fools PARITY. Surprisingly, while the class of problems in PARITYis
very broad, we can explicitly construct an efficient algorithm for computing G,,.
2.1 Constructing a PRG to fool PARITY

We begin by considering the case where S C [n] is empty. If we define xg(z) = 0 when S = &,
then we simply see that E,y, [xg(x)] = 0, so fooling this constant function is trivial since we can
simply let Gy = 0. On the other hand, if S # @, then we have that E,u, [xs(z)] = 4. Thus, our
goal is that for all nonempty S C [n] we have

E (Gl € (-5 +e).)

yNUs(n,s)

While we won’t go into error-correcting codes yet, it turns out that the connection of e-biased
spaces to error-correcting codes has shown that the optimal lower bound on the seed length for
Gy is s(n,e) > log(n) + 2log (%) In fact, the current state of the art has only shown an explicit
construction for s(n,e) = log(n) + (2 + o(1)) log (1)." We now present our specific construction.

Construction 2.3. For a desired output length n and approzimation parameter € > 0, let our seed
length be r = s(n,¢e), let ¢ = 2", and define our base field as F = F,. Our PRG G, now proceeds
as follows:

1. Sample x,y ~ F uniformly
(a) This requires 21log(2") = 2r bits.
2. Compute z; = (z,y")

(a) Here, the power y' is taken in F = Fy, but we take the inner product in I, ~ F, by
considering x and y; as n-length vectors with elements in Fo.

3. Output z = (21,22, -, 2n)-
We claim that G, satisfies (1).

Proof. Because the output of xg is an element of Fy, we can reduce the condition in (1) to

Pr [xs(z) = 0] € (; e % + 5) @)

2~Glpy

'See Explicit, Almost Optimal, Epsilon-Balanced Codes (Ta-Shma, 2017) for more details.

https://www.cs.tau.ac.il/~amnon/Papers/T.STOC17.pdf

Lecture 7: Sep 13, 2022 3

for all nonempty S C [n]. By expanding the definition of x¢ and using the bilinearity of the inner
product, we get that

Pr [xg(2) =0] = Pr Zzi = O]

z2~Ghy 2~Gyy Py

= Pr Z(m,yi>:0]

LieS

= P Y =
L €S

= PCI; [(z, Ps(y)) = 0],

z2~Gp

where we define Ps(y) = > .cg y®. By the same logic as just taking the parity over two bit strings
(i.e., that if we fix the rest of the bits and only flip the last one, then taking parity will give us 0
half the time and 1 the rest of the time), we easily see that for a fixed Ps(y) # 0, we have that
(x, Ps(y)) is uniform over Fy for ~ F,, meaning that

P P =0]=—-.
Observe, however, that if Ps(y) = 0 € Fy, then (z, Ps(y)) = 0 for all « € F,, which ruins our overall
randomness of (x, Ps(y)) by biasing it towards 0.
Nevertheless, because we can consider Pg(y) as a univariate polynomial in y over [, with at
most degree n, we see that

n
Pr [Pg =0] < —
r [Ps(y) =0l <
because Pg(y) can have at most n zeroes and |F,;| = ¢. Therefore, combining this with the fact
that for a fixed Ps(y) # 0, we have that (z, Ps(y)) is uniform over Fy for x ~ [, we see

- 1 nl n
Pr T, y') =0 €(a+).

In other words, to satisfy (2), we solve e = 7 to get r = log(q) = log ¢ = log(n) + log 1. Note,
though, that we do not beat the SOTA of log(n) + (2 + o(1)) log (%) since we need to sample
2r = 2log(n) + 2log (1) random bits. O

3 (Brief introduction to) Error-Correcting Codes

It turns out that that there are important connections between the pseudorandom primitives we
have seen so far and error-correcting codes (that we now introduce).

The concept of error-correcting codes comes up naturally when we consider noisy communication
between two entities.

Example 3.1. Consider two people, Alice and Bob. Alice has a message m that she would like
to send to Bob, but in order to do that m must pass through a noisy channel. Consequently, Bob
receives a noisy m' and must figure out what was the original message that Alice intended to send.

Lecture 7: Sep 13, 2022 4

In the simplest case of Alice sending Bob a single bit b and the noisy channel being allowed
to change at most one bit, we can come up with the simple error-correcting code of Alice sending
(b,b,b) (i.e., just repeating b three times) and Bob taking the majority vote to get Alice’s intended
message. This majority strategy works every time since at most one bit can be corrupted.

In general, we will desire for an error-correcting code over an alphabet ¥ (we will often consider
Y. = Fy) to have an encoder Enc : ¥* — %" where k is the dimension of our message space and
n is the dimension of our code, and a decoder Dec : £ — ¥F such that Dec(Enc(m)) = m for all
m € ¥* as long as too many bits of the message have not been corrupted. Because we measure
corruption in messages as switching out one symbol in ¥ for another one in ¥, we measure the
distance between two encoded messages using the Hamming distance.

Definition 3.2 (Hamming distance). For any two ¢, € X", their Hamming distance A(c,c') is
defined as

Ale,d) = [{i:e # Y.

Note that the Hamming distance is indeed a distance metric, and thus defines a topology on its
given space.

Using this definition, we can formally define error-correcting codes as follows:

Definition 3.3. An (n, k,d), code C,2 where n is the block length, k is the dimension of the message
space, d is the distance, and q is the alphabet size (often referring to Fy) is a subset C C X" such
that logy [C| = k and min. vcc A(c,c’) > d. In other words, C can correct up to Ld%lj errors and

detect up to d — 1 errors.

In light of this definition, we see that our code in Example 3.1 has distance d = 3, so it can
correct L%J = 1 errors, as we designed it to. The quality of an error-correcting code is measured

in terms of its relative rate and relative distance defined below.

Definition 3.4 (Relative rate/distance). For an (n,k,d), code C, its relative rate is r = % and its
relative distance is § = %.

Notice that since k < n and d < n, we have that both r,0 € [0,1]. In particular, a higher
relative rate means that the sender, Alice, doesn’t have to augment her message too much before
sending it to Bob. This is good, since we don’t want to have to add many bits when encoding
a message, meaning that we want to get r as close to 1 as possible. Similarly, a higher relative
distance means that we can correct a larger fraction of the errors in the message, so we want to get
0 as close to 1 as possible as well.

As with any optimization problem with two orthogonal objectives, we usually have to balance
optimizing for relative rate and relative distance when constructing error-correcting codes. And
while we have good existential results, constructing an explicit code that matches these bounds is
a challenging open problem. We will explore the connection between these codes and PRGs in the
next lecture.

2The encoder and decoder for C are implicitly defined along with C.

	Introduction
	-biased spaces and PARITY
	Constructing a PRG to fool PARITY

	(Brief introduction to) Error-Correcting Codes

