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1 Introduction

In this lecture, we will see the connection between PRGs and ε-biased spaces, and we will begin
building up our knowledge of algebraic error-correcting codes to eventually see their connection to
PRGs as well.

2 ε-biased spaces and PARITY

Here, we will connect PRGs to a class of distributions called ε-biased spaces/distributions and see
their dual view as exactly the PRGs that fool languages in PARITY. Before introducing ε-biased
distributions, we need to understand the Boolean function class PARITY.

Definition 2.1 (The class PARITY). The Boolean funciton class PARITYis the class of decision
problems solvable by a nondeterministic polynomial-time Turing machine where the acceptance con-
dition is that the number of accepting paths is odd (i.e., their parity is equal to 1). Another way
of viewing PARITYis as the set of functions F =

⋃
n∈NFn where each Fn is the set of all parity

functions on n elements. Explicitly, we can write

Fn := {χS : {0, 1}n → {0, 1} | ∀S ⊆ [n]}

where χS is the parity function on a subset of indices defined as

χS(x) :=
⊕
i∈S

xi.

Alternatively, instead of taking the parity directly we can simply do addition in Fn
2 and define

χS(x) : Fn
2 → F2

x 7→
∑
i∈S

xi.

Now, recall from previous lectures that we can define a PRG by the class of functions that it
fools. In the context of PARITY, we will see that the PRGs that fool PARITYare exactly those that
are also ε-biased distributions! We now proceed to define these distributions and give an explicity
construction of such PRGs.

Definition 2.2 (ε-biased space). Let Un be the uniform distribution on n bits. An ε-biased
space/distribution (also referred to as a small-bias sample space) is a distribution D on {0, 1}n
such that for all S ⊆ [n] we have ∣∣∣∣ E

x∼Un

[χS(x)]− E
x∼D

[χS(x)]

∣∣∣∣ ≤ ε.

In other words, D is a distribution that fools all parity functions.
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We can obtain a dual view of an ε-biased distribution by considering D to be the output of a
PRG Gn : {0, 1}s(n,ε) → {0, 1}n such that∣∣∣∣ E

x∼Un

[χS(x)]− E
y∼Us(n,ε)

[χS(Gn(y))]

∣∣∣∣ ≤ ε.

We would say that such a PRG fools PARITY. Surprisingly, while the class of problems in PARITYis
very broad, we can explicitly construct an efficient algorithm for computing Gn.

2.1 Constructing a PRG to fool PARITY

We begin by considering the case where S ⊆ [n] is empty. If we define χS(x) = 0 when S = ∅,
then we simply see that Ex∼Un [χS(x)] = 0, so fooling this constant function is trivial since we can
simply let G0 = 0. On the other hand, if S ̸= ∅, then we have that Ex∼Un [χS(x)] =

1
2 . Thus, our

goal is that for all nonempty S ⊆ [n] we have

E
y∼Us(n,ε)

[χS(Gn(y))] ∈
(
1

2
− ε,

1

2
+ ε

)
. (1)

While we won’t go into error-correcting codes yet, it turns out that the connection of ε-biased
spaces to error-correcting codes has shown that the optimal lower bound on the seed length for
Gn is s(n, ε) ≥ log(n) + 2 log

(
1
ε

)
. In fact, the current state of the art has only shown an explicit

construction for s(n, ε) = log(n) + (2 + o(1)) log
(
1
ε

)
.1 We now present our specific construction.

Construction 2.3. For a desired output length n and approximation parameter ε > 0, let our seed
length be r = s(n, ε), let q = 2r, and define our base field as F = Fq. Our PRG Gn now proceeds
as follows:

1. Sample x, y ∼ F uniformly

(a) This requires 2 log(2r) = 2r bits.

2. Compute zi = ⟨x, yi⟩

(a) Here, the power yi is taken in F = Fq, but we take the inner product in Fr
2 ≈ Fq by

considering x and yi as n-length vectors with elements in F2.

3. Output z = (z1, z2, . . . , zn).

We claim that Gn satisfies (1).

Proof. Because the output of χS is an element of F2, we can reduce the condition in (1) to

Pr
z∼Gn

[χS(z) = 0] ∈
(
1

2
− ε,

1

2
+ ε

)
(2)

1See Explicit, Almost Optimal, Epsilon-Balanced Codes (Ta-Shma, 2017) for more details.

https://www.cs.tau.ac.il/~amnon/Papers/T.STOC17.pdf
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for all nonempty S ⊆ [n]. By expanding the definition of χS and using the bilinearity of the inner
product, we get that

Pr
z∼Gn

[χS(z) = 0] = Pr
z∼Gn

[∑
i∈S

zi = 0

]

= Pr
z∼Gn

[∑
i∈S

⟨x, yi⟩ = 0

]

= Pr
z∼Gn

[〈
x,
∑
i∈S

yi

〉
= 0

]
= Pr

z∼Gn

[⟨x, PS(y)⟩ = 0] ,

where we define PS(y) =
∑

i∈S yi. By the same logic as just taking the parity over two bit strings
(i.e., that if we fix the rest of the bits and only flip the last one, then taking parity will give us 0
half the time and 1 the rest of the time), we easily see that for a fixed PS(y) ̸= 0, we have that
⟨x, PS(y)⟩ is uniform over F2 for x ∼ Fq, meaning that

Pr
x∼Fq

[⟨x, PS(y)⟩ = 0] =
1

2
.

Observe, however, that if PS(y) = 0 ∈ Fq, then ⟨x, PS(y)⟩ = 0 for all x ∈ Fq, which ruins our overall
randomness of ⟨x, PS(y)⟩ by biasing it towards 0.

Nevertheless, because we can consider PS(y) as a univariate polynomial in y over Fq with at
most degree n, we see that

Pr
y∼Fq

[PS(y) = 0] ≤ n

q

because PS(y) can have at most n zeroes and |Fq| = q. Therefore, combining this with the fact
that for a fixed PS(y) ̸= 0, we have that ⟨x, PS(y)⟩ is uniform over F2 for x ∼ Fq, we see

Pr
x,y∼Fq

(〈
x,
∑
i∈S

yi

〉
= 0

)
∈
(
1

2
− n

q
,
1

2
+

n

q

)
.

In other words, to satisfy (2), we solve ε = n
q to get r = log(q) = log n

ε = log(n) + log 1
ε . Note,

though, that we do not beat the SOTA of log(n) + (2 + o(1)) log
(
1
ε

)
since we need to sample

2r = 2 log(n) + 2 log
(
1
ε

)
random bits.

3 (Brief introduction to) Error-Correcting Codes

It turns out that that there are important connections between the pseudorandom primitives we
have seen so far and error-correcting codes (that we now introduce).

The concept of error-correcting codes comes up naturally when we consider noisy communication
between two entities.

Example 3.1. Consider two people, Alice and Bob. Alice has a message m that she would like
to send to Bob, but in order to do that m must pass through a noisy channel. Consequently, Bob
receives a noisy m′ and must figure out what was the original message that Alice intended to send.
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In the simplest case of Alice sending Bob a single bit b and the noisy channel being allowed
to change at most one bit, we can come up with the simple error-correcting code of Alice sending
(b, b, b) (i.e., just repeating b three times) and Bob taking the majority vote to get Alice’s intended
message. This majority strategy works every time since at most one bit can be corrupted.

In general, we will desire for an error-correcting code over an alphabet Σ (we will often consider
Σ = F2) to have an encoder Enc : Σk → Σn, where k is the dimension of our message space and
n is the dimension of our code, and a decoder Dec : Σn → Σk such that Dec(Enc(m)) = m for all
m ∈ Σk as long as too many bits of the message have not been corrupted. Because we measure
corruption in messages as switching out one symbol in Σ for another one in Σ, we measure the
distance between two encoded messages using the Hamming distance.

Definition 3.2 (Hamming distance). For any two c, c′ ∈ Σn, their Hamming distance ∆(c, c′) is
defined as

∆(c, c′) =
∣∣{i : ci ̸= c′i}

∣∣ .
Note that the Hamming distance is indeed a distance metric, and thus defines a topology on its
given space.

Using this definition, we can formally define error-correcting codes as follows:

Definition 3.3. An (n, k, d)q code C,2 where n is the block length, k is the dimension of the message
space, d is the distance, and q is the alphabet size (often referring to Fq) is a subset C ⊆ Σn such
that log2 |C| = k and minc,c′∈C ∆(c, c′) ≥ d. In other words, C can correct up to

⌊
d−1
2

⌋
errors and

detect up to d− 1 errors.

In light of this definition, we see that our code in Example 3.1 has distance d = 3, so it can
correct

⌊
3−1
2

⌋
= 1 errors, as we designed it to. The quality of an error-correcting code is measured

in terms of its relative rate and relative distance defined below.

Definition 3.4 (Relative rate/distance). For an (n, k, d)q code C, its relative rate is r = k
n and its

relative distance is δ = d
n .

Notice that since k < n and d < n, we have that both r, δ ∈ [0, 1]. In particular, a higher
relative rate means that the sender, Alice, doesn’t have to augment her message too much before
sending it to Bob. This is good, since we don’t want to have to add many bits when encoding
a message, meaning that we want to get r as close to 1 as possible. Similarly, a higher relative
distance means that we can correct a larger fraction of the errors in the message, so we want to get
δ as close to 1 as possible as well.

As with any optimization problem with two orthogonal objectives, we usually have to balance
optimizing for relative rate and relative distance when constructing error-correcting codes. And
while we have good existential results, constructing an explicit code that matches these bounds is
a challenging open problem. We will explore the connection between these codes and PRGs in the
next lecture.

2The encoder and decoder for C are implicitly defined along with C.
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