CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 6: Sep 08, 2022
Lecturer: Eshan Chattopadhyay Scribe: Jenny Chen

6.1 Overview

Today, we want to define “Dream Pseudorandom Generator (PRG)” and see how such a “Dream
PRG” would immediately imply BPP = P.

6.2 Boolean Circuits

First, we define the Boolean circuits (analogous to algebraic circuits defined in a previous lecture).

A Boolean circuit is a DAG such that its leaves represent input nodes, and contains an output node

with 0 out-degree. For internal nodes (or the operators), we have A, V, and —. Similar to algebraic

circuit, the size of the circuit is the number of edges/wires, and the depth is the longest path from

root to leaf. Fan-in and fan-out correspond to the in-degrees and out-degrees of nodes respectively.
Illustration of a Boolean circuit.

x1 x2 xn

Figure 1: An example of a boolean circuit.

It does not make a lot of sense if we just say the circuit C' computes L C {0,1}* since one
circuit can only take in inputs of a certain length. Therefore, we introduce a modified definition.

Definition 6.1. Circuit family {Cy}n>0 computes L C {0,1}* if Yn > 0,Vz € {0,1}",Cy(x) =
L(z) (where L(z) is 1 iff x € L).

Definition 6.2. Define SIZE(S(n)) to be the complexity class that contains all language L such
that there exists some circuit families {Cy,} computing L, and ¥n > 0, size(C(n)) < S(n).
Definition 6.3. P /poly = o SIZE(n°)

Thus, it’s the complexity class that contains any language L that can be computed by a poly-
nomial size circuit family. It is known that P C P/poly.

Definition 6.4. DTIME(T(n)) is the complexity class that contains all language L such that there
exist some Turing Machine that can decide L in T'(n) time.
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We need the following result of translating Turing machines to Boolean circuits.

Theorem 6.5. Suppose L € DTIME(T(n)) = L € SIZE(T(n)log(T(n))

6.3 Dream PRG and BPP =P

Definition 6.6. Dream PRG: let {G,, : {0,1}3(»™) — {0,1}"},,50 be an e-PRG against SIZE(m(n))
with S(n,m) = O(log(m/e)), for all m(n) = poly(n).

Theorem 6.7. If we have a dream PRG = BPP = P.

This theorem is equivalent to, having a dream PRG that has a seed length of O(logn) against
polynomial size circuits, we can derandomize all BPP algorithms.

Proof. Let L € BPP,
= 3M, such that Vn > 0,Vz € {0,1}", Pr[M(z,r) = L(z)] > % (from definition of BPP)
We construct an algorithm A as the following: Given input z € {0,1}"

e Let G, : {0,1}°(»™) — {0,1}" be a 0.1-PRG against m = n?® circuit.
e Run M on (z,7;),Vi € {1,2,...,25(™)} (cycle over all seeds to G,,)
e Output majority

We know that s(n,m) = c/log(m). So there’re a total of 25(»™) = O(n) seeds. The runtime
for each input is polynomial time, say O(n¢). Therefore, the total runtime for this algorithm is
O(nct¢") where ¢ comes from the runtime for each input and ¢ comes from the seeds (since we loop
over all possible seeds). By using the seeds generated from the PRG, we reduce the randomness
from O(2") to O(25™™)), which is from exponential to polynomial.

Therefore, we created a polynomial time algorithm A that desides L (but here we assume the
calculation of G,, is polynomial time as well).

Then we prove the correctness of A: We want to show that for a fixed input = € {0,1}",
A(z) = L(x).

Since the input z is fixed and in each repetition the only difference is the seed r we provide, we
can define M, (r) = M(x,r) where M, is a Turing Machine that only takes in r and give the same
result as M (z,r). Since we know the runtime of M, is T'(n) = n¢, from theorem (6.5), we know
that there exists some {C),} with SIZE(C,,) < ¢/n°(logn) such that C,(r) = My(r).
= P, jo1yne[Ma(r) = L(2)] 2 § = Pr, o 13ne[Ca(r) = L(2)] > 3 @

And we know Pr, g 13n¢[Cn(r) = 1] = Pry_gg 1350m.m [Cn(Gr(t)) = 1] < 0.1 @ from definition of
0.1-PRG

@ + @ = Py 1100mm [Ca(Gt)) = L) 2 3~ 01> }

= P 1pstmm [M (@, Ga (1)) = L(2)] > 3

Since in the algorithm we take the majority, we will get the correct answer for sure. O

6.4 Existence of Dream PRGs (probabilistic/non-constructive)

Although we cannot give a specific dream PRG, we can still show that the probability that there
exists some dream PRGs is very high.

Theorem 6.8. 3G = {0,1}5™9) — {0,1}" that e-fools SIZE(m,) circuits, with s(m,€) = O(log(m/e)).

Note since we won’t use any special properties of n, this can generalize to any n.
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Proof. Pick a random function G. Let’s say G takes in an input of length s(m,e) and picks a
random output of length n uniformly. Let C' € SIZE(m)

The idea of the proof is to show that Pr[G does not e-fool C' (bad events)] < d. Then from
union bond Pr[G is an e-PRG for size(m)] > 1 — § x |size(m)| @, and we want to pick a ¢ that can
make this probability greater than 0 (size(m) is at most 2P°Y(™) here).

The bad events can be represented as |E, ¢ 1ys0m.0 [C(G(2))] — Epvfo,1y [C(r)]| > €, where the
function G we picked cannot fool the circuits. Since G is also a random variable, we want to show
that Pr([E, (g, [C(G(E))] — Eygoye [C()]| > €) < 6 @,

E, 10,13:0m0 [C(G(1))] = W Z?i(lme) C(Y;),Y; = G(t;). Yi’s are the output of the generators
from different seeds t;. Since Y;’s are all sampled uniformly by G, they are all iid. Therefore,
Vi, E[C(Y;)] = E,w(0,13[C(r)]. So @ can be interpreted as: given a true mean E, o1y [C(r)] and
we sample 25(™€) times independently, the probability that we’re too far off. Using the Chernoff
Bounds here, § = 9=ce?2°™9) " And we want § = 27¢°2°"™ < 2_mC/ to make @ > 0.
= 25(m, €) = 'm % %
= s(m, e) = O(log(m/e)) O

With some careful chosen constants (allowing large enough seed lengths), we can show that most
random functions are dream PRGs (but of course, explicitly constructing such a PRG remains a
daunting task!)
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