
CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 19: October 27, 2022

Lecturer: Eshan Chattopadhyay Scribe: Tomas Alvarez, Noam Ringach

1 Introduction

In our last lecture, we saw an explicit construction of a (k, ε)-extractor Ext : {0, 1}n × {0, 1}d →
{0, 1}m such that for all k < n we have d = O(n) and m = k−2 log

(
1
ε

)
−O(1). So we are extracting

almost all of the randomness from our (n, k)-source, but the size of our seed is linear with respect
to n, which is sub-optimal. In fact, we know from the existential construction of an extractor via
the probabilistic method that we can get d as low as d = log(n−k)+2 log

(
1
ε

)
+O(1). Here, we will

improve upon this by using the Nisan-Wigderson PRG to create an extractor that only requires
d = O(log(n)) random bits and extracts m =

√
k − log(1/ε) +O(1) bits.

2 Trevisan’s extractor and connection to the Nisan-Wigderson
PRG

At first glance, it might not seem obvious how we can use the Nisan-Wigderson PRG to obtain a
good randomness extractor. Recall, the Nisan-Wigderson PRG takes in a (s, ε)-hard function and
uses a set design to extend O(polylog(n)) random bits to n bits that looks nε-random to circuits
of size s′ = s − O

(
n2k
)
. On the other hand, for a seeded extractor we are given a seed y, and

a sample from X, an (n, k)-source, from which we would like to approximnately produce Um, the
uniform distribution on m bits. The first insight from Trevisan is to consider samples x ∈ {0, 1}n
from X as functions x : {0, 1}log(n) → {0, 1}. The function for a fixed sample takes in an index i
and outputs 0 or 1 corresponding to the i’th bit in x. For example, for x = 011 · · · we would say
x(1) = 0, x(2) = 1, x(3) = 1 and so on.

3 Extractor construction

This construction is simple and relies heavily on the Nisan-Wigderson PRG. For the extractor we are
given (n, k)-source X and x ∈ {0, 1}n a sample from X and a seed y ∈ {0, 1}r. We also have access
to a set system S1, · · · , Sm ⊆ [r] which is an (n̄, λ)-design. As before, we think of x as a function x :
{0, 1}n̄ → {0, 1} where n̄ = log(n). Now we claim Ext(x, y) = NW x(y) = x(α1)◦x(α2)◦· · ·◦x(αm)
is a (k, ϵ) seeded extractor. In this case NW x(y) denotes the output of the Nisan-Wigderson PRG
with x as the hard function and y as the input, a◦ b denotes concatenation, and αi = y|Si ∈ {0, 1}n̄
is the projection of y onto the indices in the set Si. Next, we prove that this construction indeed
gives us an extractor.

Proof. Suppose for the sake of contradiction that Ext is not a (k, ϵ) extractor where k is yet to be
determined. Then WLOG there exists a distinguisher D : {0, 1}m → {0, 1} such that

Pr
x∼X,y∼Y

[D(NW x(y)) = 1]− Pr[D(Um) = 1] > ϵ

1



Lecture 19: October 27, 2022 2

Now a Markov argument shows that

Pr
x∼X

[
| Pr
y∼Y

[D(NW x(y)) = 1]− Pr[D(Um) = 1]| > ϵ

2

]
>

ϵ

2

For any x where the distinguisher is good at distinguishing we can construct hybrids

H0 = x(y|S1) ◦ x(y|S2) ◦ · · · ◦ x(y|Sm)

H1 = b1 ◦ x(y|S2) ◦ · · · ◦ x(y|Sm)

H2 = b1 ◦ b2 ◦ · · · ◦ x(y|Sm)

Hi = b1 ◦ b2 ◦ · · · ◦ bi ◦ x(y|Si+1) ◦ · · · ◦ x(y|Sm)

...

Hm = b1 ◦ b2 ◦ · · · ◦ bm

where b1, b2, · · · bm ∼ U1. As in the Nisan-Wigderson PRG analysis we can rewrite Pr
y∼Y

[D(NW x(y)) =

1]−Pr[D(Um) = 1] as a telescoping sum between them consecutive hybrids and since their sum is at
least ϵ/2 we conclude that there exists some index i for which |Pr[D(Hi) = 1]−Pr[Hi+1 = 1]| ≥ ϵ

2m
and thus this is an approximator of x.

Sampling at most m random bits b1, b2, · · · , bi, calculating x(y|Si+1), x(y|Si+2), x(y|Sm) with a
circuit of size m2λ and a description of i in log(m) bits, gives the distinguisher access to Hi and
Hi+1. If we let 2λ = m then this is O(m2) bits of information and knowledge of D to differentiate
between the two hybrids. We can rewrite all of this to more closely resemble an approximator
of x as a function which is given D, the extra O(m2) information, referred to as β, as follows:
Pr
α
[gD(α, β) = x(α)] ≥ 1

2 + ϵ
2m .

We now consider the set BadX = {x ∈ X : | Pr
y∼Y

[D(NW x(y)) = 1]− Pr[D(Um) = 1]| > ϵ
2} over

which our analysis was done. If we fix β based on some set design then we know for x ∈ BadX
that Pr

α
[gD(α, β) = x(α)] ≥ 1

2 + ϵ
2m . We can actually strengthen the inequality to Pr

α
[gD(α, β) =

x(α)] = 1 if we are given some extra information. We continue with this assumption and show how
to achieve equality in the next section. With this strengthened form, the function is no longer an
approximator, but rather fully determines x given some β. If we assume WLOG that X is flat then
|BadX | > ϵ

22
k since it is an (n, k)-source and Pr

x∼X
[| Pr
y∼Y

[D(NW x(y)) = 1]−Pr[D(Um) = 1]| > ϵ
2 ] >

ϵ
2

means at least ϵ/2 of all x ∈ X are in BadX . Since there are only 2O(m2) different β’s (set designs),
and each one fully determines a value of x, it cannot be the case that we have more x’s in BadX
than g’s. Thus, for contradiction let ϵ

22
k > 2O(m2) =⇒ k = m2 + log(1/ϵ) + O(1). Since this is a

contradiction we have that Ext is a (k, ϵ) extractor.

4 Aid of list decodable codes

Recall from above that we assumed that we could achieve Prα
[
gD(α, β) = x(α)

]
= 1 by giving

gD some “extra information” contained in β. But how is this extra information determined and
how can we guarantee that we don’t require too much extra information (i.e., at most O(m2) extra
information so that we don’t hurt our complexity)? The strategy for efficiently constructing such
extra information becomes clear if we consider x ∈ {0, 1}n to be a codeword in some code which



Lecture 19: October 27, 2022 3

we will determine later1.
Let zβi

= gD(α1, βi) ◦ · · · ◦ gD(αm, βi) be the concatenation of gD given βi over all αi’s. Recall
that, without any extra tricks, we already have Prα

[
gD(α, β) = x(α)

]
≥ 1

2 + ε
2m , meaning that

for any x ∈ BadX we have that x is in a n
(
1
2 − ε

2m

)
-Hamming ball around some zβi

. In other
words, all the elements of BadX are in n

(
1
2 − ε

2m

)
-Hamming balls around the zβi

’s. However, we
need to be able to identify a specific x in one of these balls around a zβi

, which is where our extra
information comes in. If there aren’t too many x’s around each zβi

, then we can use very few bits
to identify a specific x (by simply indexing them, for example). This general idea of not having too
many points within Hamming balls of a certain radius is made concrete by List-decodable codes.

Definition 4.1 (List-decodable codes). We say that a code C ⊂ {0, 1}t is a (γ, L)−binary List-
decodable code if for all z ∈ {0, 1}n we have∣∣∣∣B(z,(1

2
− γ

)
t

)
∩ C
∣∣∣∣ ≤ L,

where B(z, ρ) is the Hamming ball of raidus ρ about z. In other words, there are at most L codewords
in the Hamming ball of radius

(
1
2 − γ

)
t about any z.

Thus, if we structure BadX as a (γ, L)-List-decodable code, then we only need log(L) more bits
to identify an individual x around any zβi

. Now the question of course becomes whether there exist
such List-decodable codes with proper γ and L that will satisfy our requirements. Thankfully, the
following theorem (which we will not prove) guarantees the existence of such codes.

Theorem 4.2. There exist (γ, L)-list-decodable codes with an encoder Enc : {0, 1}t̄ → {0, 1}t with
parameters L = poly

(
1
γ

)
and t = poly

(
t̄, 1γ

)
.

Therefore, if we choose γ = ε
2m then we only need

log(L) = log

(
poly

(
2m

ε

))
= log

((
2m

ε

)O(1)
)

= O
(
log
(m
ε

))
= O

(
m2
)
.

Consequently, the extra information required to choose a codeword from a list-decodable code
isn’t asymptotically more than what we’re already using. In this way, we are able to encode each
x ∈ {0, 1}n into a space {0, 1}n′

where n′ = poly
(
γn, 2mε

)
before using them in the Nisan-Wigderson

PRG to get our desired guarantee of Prα
[
gD(α, β) = x(α)

]
= 1.

1Note that we in fact have n = m since by construction, but we will keep using n and m separately to keep the
context clear.


	Introduction
	Trevisan's extractor and connection to the Nisan-Wigderson PRG
	Extractor construction
	Aid of list decodable codes

