CS 6815: Pseudorandomness and Combinatorial Constructions

Fall 2022

Lecture 16: Oct 19, 2022

Lecturer: Eshan Chattopadhyay

Scribe: Atul Ganju

1 Randomness Extractors

1.1 Deterministic Randomness Extractors

In our definition of a randomness extractor, the extractor must work for every source in some family of sources \mathcal{X} . For this reason, we were able to show that there exists no deterministic extractor for even (n, n - 1) sources. However, if we were to instead only require the randomness extractor to work for a specific source, then we can show that a random function will work as an extractor for that source with high probability.

Interestingly, flat (n, k)-sources, which are uniform distributions over a set $S \subseteq \{0, 1\}^n$ with $|S| = 2^k$, are really representative of general (n, k) sources:

Claim 1.1. Any (n, k)-source is a convex combination of flat (n, k) sources.

Proof. Let X be an (n, k)-source. Then, since we can view any random variable taking values in $[2^n]$ as a unique vector of dimension 2^n where the *i*-th coordinate is the probability the random variable takes the value *i*, we know that X can be uniquely represented as some vector v of dimension 2^n where, for each $i \in [2^n]$, $v_i \in [0, 2^{-k}]$, and $\sum_i v_i = 1$. The set of vectors that satisfy these constraints, and therefore uniquely represent some (n, k)-source, form the convex polytope in \mathbb{R}^{2^n} that has the set of corners $\{\sum_{i \in S} 2^{-k} e_i : S \subseteq n, |S| = 2^k\}$. As these corners are the set of flat sources, by the convexity of the polytope, we have that X, and therefore any n, k-source, is a convex combination of flat (n, k)-sources.

As a result, if we define for all $S \subseteq [2^n]$ of cardinality 2^k the flat source X_S over the subset S, then to sample from an arbitrary (n, k) source $X = \sum_S \lambda_S X_S$ where each $\lambda_S \in [0, 1]$, we can sample from X_S with probability λ_S . Therefore, if we can create probabilistic algorithms to work for flat (n, k)-sources, then we can make them work for any (n, k)-source.

Now back to showing that for any (n, k)-source, a random function will work as an extractor with high probability. As shown above, it suffices to show this for flat (n, k)-sources.

Theorem 1.2. For every $n, m, k \in \mathbb{N}$, every $\epsilon > 0$, and every flat (n, k)-source X, if we choose a random function Ext : $\{0,1\}^n \to \{0,1\}^m$ with $m = k - 2\log(1/\epsilon) - O(1)$, then with probability $1 - 2^{-\Omega(2^k \epsilon^2)}$, we have:

 $|\operatorname{Ext}(X) - U_m| \le \epsilon,$

where U_m is a uniform random variable on $\{0,1\}^d$.

Proof. As stated above, it suffices to show that there exists an extractor for the family of flat (n, k)-sources. Take a flat (n, k)-source X and denote $S \subseteq \{0, 1\}^n$ as its support. If we randomly chose Ext, then for any $x \in S$ and $T \subseteq \{0, 1\}^m$, we have that the probability that $\text{Ext}(x) \in T$ is

 $|T| \cdot 2^{-m}$, where these events are independent. Therefore, we have:

$$\Pr[\operatorname{Ext}(X) \in T] = \frac{1}{2^k} \sum_{x \in S} \mathbb{1}\{\operatorname{Ext}(x) \in T\},\$$

where by the Chernoff bound, we know that:

$$\Pr\left[\left|\frac{1}{2^k}\sum_{x\in S}\mathbb{1}\{\operatorname{Ext}(x)\in T\} - \frac{|T|}{2^m}\right| > \epsilon\right] \le 2^{-\Omega(2^k\epsilon^2)}.$$

As this is for a and specific T, we can union bound over all 2^{2^m} possible T to get that:

$$\Pr\left[\left|\operatorname{Ext}(X) - U_m\right| > \epsilon\right] \le 2^{2^m} 2^{-\Omega(2^k \epsilon^2)},$$

which, for $m = k - 2\log(1/\epsilon) - O(1)$, gives us our desired result. We leave showing this as an exercise to the reader.

One would hope that e could get an extractor that was good for all flat (n, k)-sources with another union bound; however, since the number of flat (n, k)-sources is $\binom{2^n}{2^k} \approx 2^{n2^k}$, this would fail atrociously. Therefore, in order to overcome the shortcomings of deterministic randomness extractors, we look towards seeded randomness extractors.

2 Seeded Extractors

Seeded extractors are more powerful than regular extractors because, instead of using one deterministic function as a randomness extractor for a family of sources \mathcal{X} , a seeded extractor is a randomized function which extracts randomness from \mathcal{X} . One can think of this randomized function as a family of deterministic functions that are randomly chosen depending on a sequence of coin flips. Formally, a seeded extractor and a strong seeded extractor are defined as follows:

Definition 2.1 (seeded extractor). Take some family of distributions \mathcal{X} on $\{0,1\}^n$. Then the function Ext : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -seeded extractor for \mathcal{X} , if for any $X \in \mathcal{X}$ we have that:

$$|\operatorname{Ext}(X, U_d) - U_m| \le \epsilon,$$

where U_d and U_m are uniform random variable on $\{0,1\}^d$ and $\{0,1\}^m$ respectively.

Definition 2.2 (strong seeded extractor). Take some family of distributions \mathcal{X} on $\{0,1\}^n$. Then the function Ext : $\{0,1\}^n \times \{0,1\}^d \to \{0,1\}^m$ is a (k,ϵ) -strong seeded extractor for \mathcal{X} , if for any $X \in \mathcal{X}$ we have that:

$$\left| (\operatorname{Ext}(X, U_d), U_d) - (U_m, U_d) \right| \le \epsilon,$$

where (a, b) denotes concatenation of b onto a.

Just by providing a little randomness, we will be able to show that seeded extractors exist for many interesting families of sources. Specifically, we have the following existence theorem for seeded extractors:

Theorem 2.3. For every $n \in \mathbb{N}, k \in \{0, \dots, n\}, \epsilon > 0$, there exists a (k, ϵ) -seeded extractor Ext : $\{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$ with $m = k + d - 2\log(1/\epsilon) - O(1)$ and $d = \log(n-k) + 2\log(1/\epsilon) + O(1)$.

Proof. As stated above, it suffices to show that there exists an extractor for the family of flat (n, k)-sources. Take a flat (n, k)-source X and denote $S \subseteq \{0, 1\}^n$ as its support. If we follow the probabilistic method proof strategy in Theorem 1.2, we have that if we randomly chose Ext, then for any $x \in S, y \in \{0, 1\}^d$, and $T \subseteq \{0, 1\}^m$, the probability that $\text{Ext}(x, y) \in T$ is $|T| \cdot 2^{-m}$, where these events are independent. Therefore, we have:

$$\Pr[\operatorname{Ext}(X, U_d) \in T] = \frac{1}{2^k 2^d} \sum_{x, y} \mathbb{1}\{\operatorname{Ext}(x, y) \in T\},\$$

where by the Chernoff bound, we know that:

$$\Pr\left[\left|\frac{1}{2^k 2^d} \sum_{x,y} \mathbb{1}\left\{\operatorname{Ext}(x,y) \in T\right\} - \frac{|T|}{2^m}\right| > \epsilon\right] \le 2^{-\Omega(2^k 2^d \epsilon^2)}.$$

As this is for a and specific T, we can union bound over all 2^{2^m} possible T to get that:

$$\Pr\left[|\text{Ext}(X) - U_m| > \epsilon\right] \le 2^{2^m} 2^{-\Omega(2^k 2^d \epsilon^2)},$$

where by setting $m = k + d - 2\log(1/\epsilon) - O(1)$, we get that the failure probability of Ext on X is at most $2^{-\Omega(2^k 2^d \epsilon^2)}$. Notice that in comparison to what we saw in Theorem 1.2, we have an additional dependence on a double exponential in the length of the seed dwhich gives us room to again union bound over all flat sources to get an upper bound on the probability that a random function is an extractor for all flat, and therefore all, (n, k)-sources. Taking the union bound over all flat sources, we have that since there are $\binom{2^n}{2^k}$ flat sources, the probability Ext fails on some flat source is upper bounded by:

$$\binom{2^n}{2^k} \cdot 2^{-\Omega(2^k 2^d \epsilon^2)} \le \left(\frac{2^n e}{2^k}\right)^{2^k} \cdot 2^{-\Omega(2^k 2^d \epsilon^2)},$$

where the latter expression is less than 1 if $d \ge \log(n-k) + 2\log(1/\epsilon) + O(1)$. We leave showing this as an exercise to the reader.