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1 Randomness Extractors

1.1 Deterministic Randomness Extractors

In our definition of a randomness extractor, the extractor must work for every source in some family
of sources X . For this reason, we were able to show that there exists no deterministic extractor for
even (n, n − 1) sources. However, if we were to instead only require the randomness extractor to
work for a specific source, then we can show that a random function will work as an extractor for
that source with high probability.

Interestingly, flat (n, k)-sources, which are uniform distributions over a set S ⊆ {0, 1}n with |S| =
2k, are really representative of general (n, k) sources:

Claim 1.1. Any (n, k)-source is a convex combination of flat (n, k) sources.

Proof. Let X be an (n, k)-source. Then, since we can view any random variable taking values in [2n]
as a unique vector of dimension 2n where the i-th coordinate is the probability the random variable
takes the value i, we know that X can be uniquely represented as some vector v of dimension
2n where, for each i ∈ [2n], vi ∈ [0, 2−k], and

∑
i vi = 1. The set of vectors that satisfy these

constraints, and therefore uniquely represent some (n, k)-source, form the convex polytope in R2n

that has the set of corners {
∑

i∈S 2−kei : S ⊆ n, |S| = 2k}. As these corners are the set of flat
sources, by the convexity of the polytope, we have that X, and therefore any n, k-source, is a convex
combination of flat (n, k)-sources.

As a result, if we define for all S ⊆ [2n] of cardinality 2k the flat source XS over the subset S, then
to sample from an arbitrary (n, k) source X =

∑
S λSXS where each λS ∈ [0, 1], we can sample

from XS with probability λS . Therefore, if we can create probabilistic algorithms to work for flat
(n, k)-sources, then we can make them work for any (n, k)-source.

Now back to showing that for any (n, k)-source, a random function will work as an extractor with
high probability. As shown above, it suffices to show this for flat (n, k)-sources.

Theorem 1.2. For every n,m, k ∈ N, every ϵ > 0, and every flat (n, k)-source X, if we choose
a random function Ext : {0, 1}n → {0, 1}m with m = k − 2 log(1/ϵ) − O(1), then with probability

1− 2−Ω(2kϵ2), we have:
|Ext(X)− Um| ≤ ϵ,

where Um is a uniform random variable on {0, 1}d.

Proof. As stated above, it suffices to show that there exists an extractor for the family of flat
(n, k)-sources. Take a flat (n, k)-source X and denote S ⊆ {0, 1}n as its support. If we randomly
chose Ext, then for any x ∈ S and T ⊆ {0, 1}m, we have that the probability that Ext(x) ∈ T is
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|T | · 2−m, where these events are independent. Therefore, we have:

Pr[Ext(X) ∈ T ] =
1

2k

∑
x∈S

1{Ext(x) ∈ T},

where by the Chernoff bound, we know that:

Pr

[∣∣∣∣∣ 12k ∑
x∈S

1{Ext(x) ∈ T} − |T |
2m

∣∣∣∣∣ > ϵ

]
≤ 2−Ω(2kϵ2).

As this is for a and specific T , we can union bound over all 22
m

possible T to get that:

Pr [|Ext(X)− Um| > ϵ] ≤ 22
m
2−Ω(2kϵ2),

which, for m = k − 2 log(1/ϵ) − O(1), gives us our desired result. We leave showing this as an
exercise to the reader.

One would hope that e could get an extractor that was good for all flat (n, k)-sources with another

union bound; however, since the number of flat (n, k)-sources is
(
2n

2k

)
≈ 2n2

k
, this would fail atro-

ciously. Therefore, in order to overcome the shortcomings of deterministic randomness extractors,
we look towards seeded randomness extractors.

2 Seeded Extractors

Seeded extractors are more powerful than regular extractors because, instead of using one deter-
ministic function as a randomness extractor for a family of sources X , a seeded extractor is a
randomized function which extracts randomness from X . One can think of this randomized func-
tion as a family of deterministic functions that are randomly chosen depending on a sequence of
coin flips. Formally, a seeded extractor and a strong seeded extractor are defined as follows:

Definition 2.1 (seeded extractor). Take some family of distributions X on {0, 1}n. Then the
function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ϵ)-seeded extractor for X , if for any X ∈ X we
have that:

|Ext(X,Ud)− Um| ≤ ϵ,

where Ud and Um are uniform random variable on {0, 1}d and {0, 1}m respectively.

Definition 2.2 (strong seeded extractor). Take some family of distributions X on {0, 1}n. Then
the function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ϵ)-strong seeded extractor for X , if for any
X ∈ X we have that:

|(Ext(X,Ud), Ud)− (Um, Ud)| ≤ ϵ,

where (a, b) denotes concatenation of b onto a.

Just by providing a little randomness, we will be able to show that seeded extractors exist for
many interesting families of sources. Specifically, we have the following existence theorem for
seeded extractors:

Theorem 2.3. For every n ∈ N, k ∈ {0, . . . , n}, ϵ > 0, there exists a (k, ϵ)-seeded extractor Ext :
{0, 1}n×{0, 1}d → {0, 1}m with m = k+d−2 log(1/ϵ)−O(1) and d = log(n−k)+2 log(1/ϵ)+O(1).
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Proof. As stated above, it suffices to show that there exists an extractor for the family of flat
(n, k)-sources. Take a flat (n, k)-source X and denote S ⊆ {0, 1}n as its support. If we follow the
probabilistic method proof strategy in Theorem 1.2, we have that if we randomly chose Ext, then
for any x ∈ S, y ∈ {0, 1}d, and T ⊆ {0, 1}m, the probability that Ext(x, y) ∈ T is |T | · 2−m, where
these events are independent. Therefore, we have:

Pr[Ext(X,Ud) ∈ T ] =
1

2k2d

∑
x,y

1{Ext(x, y) ∈ T},

where by the Chernoff bound, we know that:

Pr

[∣∣∣∣∣ 1

2k2d

∑
x,y

1{Ext(x, y) ∈ T} − |T |
2m

∣∣∣∣∣ > ϵ

]
≤ 2−Ω(2k2dϵ2).

As this is for a and specific T , we can union bound over all 22
m

possible T to get that:

Pr [|Ext(X)− Um| > ϵ] ≤ 22
m
2−Ω(2k2dϵ2),

where by setting m = k+d−2 log(1/ϵ)−O(1), we get that the failure probability of Ext on X is at

most 2−Ω(2k2dϵ2). Notice that in comparison to what we saw in Theorem 1.2, we have an additional
dependence on a double exponential in the length of the seed dwhich gives us room to again union
bound over all flat sources to get an upper bound on the probability that a random function is an
extractor for all flat, and therefore all, (n, k)-sources. Taking the union bound over all flat sources,
we have that since there are

(
2n

2k

)
flat sources, the probability Ext fails on some flat source is upper

bounded by: (
2n

2k

)
· 2−Ω(2k2dϵ2) ≤

(
2ne

2k

)2k

· 2−Ω(2k2dϵ2),

where the latter expression is less than 1 if d ≥ log(n − k) + 2 log(1/ϵ) + O(1). We leave showing
this as an exercise to the reader.
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