
CS 6815: Pseudorandomness and Combinatorial Constructions Fall 2022

Lecture 14: Oct 6, 2022

Lecturer: Eshan Chattopadhyay Scribe: Ricky Shapley

1 Finishing the Nisan-Wigderson construction

Recall the Nisan-Wigderson PRG we described in the previous class. We stated that if there is
a language L ⊆ {0, 1}∗ which is (s, ϵ)-hard, then there is a PRG {Gn}n≥0 mapping {0, 1}r(n) →
{0, 1}m(n) that is (s′, ϵ′)-pseudorandom, where s′ = s−O(m2k) and ϵ′ = m · ϵ.

For the construction to work, we need an explicit (n, k)-design. That is, we need to be able to
construct sets S1, . . . , Sm ⊆ [r] with |Si| = m for i ∈ [m] and |Si ∩ Sj | ≤ k for i ̸= j ∈ [m].

1.1 Explicit construction of (n, k)-design

We pick a field F of size n, and define a set for every polynomial of degree at most k. For such
polynomials p, let

Sp = {(x, p(x)) : x ∈ F} .

Notice that for p ̸= p′, ∣∣Sp ∩ Sp′
∣∣− ∣∣{x ∈ F : p(x) = p′(x)}

∣∣ ≤ k.

Then there are something like nk+1 such polynomials (and therefore just as many sets) since there
are k+1 monomials and n choices for each coefficient. So we can have a (n, k)-design on a universe
of size r(n) = n2 with m(n) = nk sets. (We can just exclude the extra sets from our design for
simplicity here.)

Now we choose some parameters. We will let s(n) = 2δn and ϵ(n) = 2−δn for some constant δ.
Then, it makes sense to choose k = δn

10 logn , which gives us that m(n) = 2δn/10. Using this in the
Nisan-Wigderson PRG means the following:

Suppose there is some δ > 0 such that the language L is (2δn, 1
102

δn)-hard, then there is a

PRG G : {0, 1}n2 → {0, 1}2
δn
10 which is (2

δn

2 , 2−
9δn
10)-pseudorandom. So if we make a strong enough

assumption that exponentially large circuits cannot approximate our language, then we can find a
PRG to fool circuits of size m, that only requires O(logm) many random bits. This in turn would
imply that BPP = P.

1.2 Restrictions on L

One extra note is that we should make some restrictions on what our choice of language L can
be, in particular it should be in DTIME(T (n)) for some reasonable choice of T (n). Remember
that if L is in DTIME(T (n)), then it can be computed by circuits of size T (n) log(T (n)). So if,
for example, we ask T (n) to be polynomial in n, then our above theorem is meaningless as we can
compute our language with some polynomially sized circuit.

In the construction of the PRG, we evaluate the m inputs to check if they are in L, and m is
exponential in n. So letting T (n) = 2O(n) is fine because it doesn’t affect the asymptotic runtime.

This is a difference from cryptography, where we would not allow the PRG to be exponential
n. But since we will use our PRGs to derandomize by running over all seeds, this will take time
that is exponential in n but still polynomial in m, which is what we desire.

1

Lecture 14: Oct 6, 2022 2

1.3 Relation to circuit lower bounds

In our theorem, we supposed that there was a language that some class of circuits could not
approximate. We can express this assumption as a circuit lower bound. Restating, we supposed
there is some language in E = DTIME(2O(n)), and L is 2δn-hard. This is a circuit lower bound
against the complexity class E.

We know that P in P/poly so suppose there exists L in NP and L is slightly superpolynomial
(L is nω(n)-hard) and cannot be computed by polynomially sized circuits. (This is even weaker
than saying it cannot be approximated.) This would imply P ̸= NP because then L ∈ NP, but
not P. But the best known circuit lower bound for languages in NP is 3.1n, which is quite far
away from the assumptions we have made to derive our derandomization results.

2 Randomness Extractors

Lots of algorithms assume you have random bits, but in reality, we only have bits from some
distribution D on {0, 1}n that contains randomness. So how do we generate pure random bits?

We consider an example of a simple source of randomness.

Example 2.1 (von Neumann Extractor). Given x1, . . . , xn where xi ∼Bernoulli(p), with δ < p <
1− δ, can we extract one bit y(x) such that y is almost random? That is, |Ey − 1/2| ≤ ϵ.

There are several ways of doing this. For example
⊕n

i=1 xi works. (In fact, the exact proba-

bilities of each outcome are given by the first row of
(

1−p p
p 1−p

)n
, which converges to the uniform

distribution exponentially fast.)
Another solution is to consider the bits of x in pairs, and if x2i−1 and x2i differ, we use y(x) =

x2i−1, otherwise we repeat with the next pair. It is clear that if the bits differ then 0 and 1 are
outputted with equal probability. And the probability of having to repeat is 1− 2p(1− p), so the
probability of repeating t times is

(1− 2p(1− p))t ≤ e−2p(1−p)tϵ

where we bound the error by the likelihood of repeating all t times. This implies to get an error of
at most ϵ, we should flip at least

t =
1

2δ(1− δ)
log(1/ϵ)

bits. (Again, this converges to the uniform distribution exponentially fast in the number of bits in
x).

Definition 2.2. Informally, an extractor is a deterministic algorithm that gets a sample from a
defective source and outputs almost uniform bits.

Ideally, we want to know if we can have randomized algorithms that still work, even with
defective randomness.

2.1 Modeling defective randomness

What is the right way of modeling a weak source? There has been a lot of work on this question,
and by now the standard way is using min-entropy that we now define.

Lecture 14: Oct 6, 2022 3

Definition 2.3. Given some distribution X over {0, 1}n, the min-entropy H∞(X) is

H∞(X) = min
x∈sup(X)

{
log

(
1

P [X = x]

)}
.

Equivalently, this implies that ifH∞(X) ≥ k, then P [X = x] ≤ 2−k for all x ∈ X. Conceptually,
it is a measurement of the maximum weighted element in X.

Example 2.4. Take any S ⊆ {0, 1}n with |S| = 2k. Let X be uniform on S. Then H∞(X) = k.

In fact, though we do not prove it here, it is sufficient to just consider this kind of flat distribu-
tions where all elements in the support of X are equally likely.

	Finishing the Nisan-Wigderson construction
	Explicit construction of (n,k)-design
	Restrictions on L
	Relation to circuit lower bounds

	Randomness Extractors
	Modeling defective randomness

