CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 8: September 24th
Lecturer: Eshan Chattopadhyay Scribe: Rishi Advani

8.1 Expanders - Explicit constructions

In this lecture, we formulate ways to take products of graphs to construct larger expander graphs.
New notation: Let a (N, D, ~)-graph be a (N,~) spectral expander that is D-regular.

Our approach: start with small graphs and iteratively construct larger graphs.

8.2 Squaring Graphs
Intuitively, squaring is just 2 hops on the original graph. Note that self loops and multiple edges are allowed

in squared graphs.

Formally, if we have a graph G = (V, E), let G2 = (V, E’) be a graph such that, for all v in V, the (i, j)th
neighbor of v is the jth neighbor of the ith neighbor of v, where 4, j € [D] (are numbers from 1 to D).

This operation doesn’t add any nodes, and it squares the number of edges. A? is the normalized adjacency /random-
walk matrix of G2. Hence, A\(G?) = \(G)?.

e degree increases :(

e nodes remain same :/

e expansion improves :)

8.3 Tensor Products

For Vin R,,, W in R,,, the tensor product of V and W is denoted as Z = VW € R,,m. It is a generalization
of the outer product.

For two vectors, we define their tensor product to be a matrix, such that z;; = v;w;,? € [n],j € [m]. For two
matrices A € R,,, X Ry,,, B € Ry, X Ry,,, the entries of the tensor product C = A ® B are as follows:

Ciﬂzjljz = Ai1j1 Bizjz

Some properties of tensor products:

1. A (B+(C)=A®B+A®C
2. in general, A B# B® A
3. (A®B)(C®D) = (AC®BD) if AC and BD are defined by the standard rules of matrix multiplication
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4. (Ae B)T = AT @ BT

With property number 3, if A, «, and By, x,, are matrices and C,, and D,, are vectors, A effectively acts
just on C' and B just on D. This is a major part of the intuition for why tensor products can be useful.

8.4 Tensor Products of Graphs

Suppose we have G1, G5, such that:
G is an (Ny, D1, v1)-graph, and its adjacency matrix is M.
G4 is an (Ng, Do, v2)-graph, and its adjacency matrix is Mo.

Then, we define the tensor product of G; and G5 to be G = G; ® Gs.

The adjacency matrix of G is M1 ® Ms. The set of vertices of G is [N1] x [Na]. (v, ) is a neighbor of (u, %)
if (u,v) isin Eq,, (i,7) in Eg,.

To visualize this, make 4 “clouds” that are copies of the vertices of GGo; each cloud represents one vertex of
G1. Draw an edge between two vertices in different clouds if the vertices corresponding to the clouds in G
are connected, and the vertices corresponding to the positions in the intra-cloud graph are connected in Gs.

Now, we analyze the spectral expansion of G.

The eigenvalues of A1 ® Ay are \;(G1)\;(G2),i € [N1],j € [No] - the largest eigenvalue is 1-1, so the second
largest is 1 - Ag, or 1- Ag,.

G is (N1N27DlDQ,min(’YGl,’YGQ))-

e degree increases :(
e nodes increase :)
e expansion remains same :/

There is a more inituive proof of the spectral expansion for tensor products that helps build the intuition
needed to think about the zig-zag product. The rest of this scribed document will be focused on this proof.

8.4.1 Intuitive Proof of Spectral Expansion for Tensor Products

A=4® A
w.t.s. that [|[Az|| < A|z||,z L 1n, N,

x is a long vector, but we’ll think of it as the flattened out form of a matrix that is Ny X Ns. Think of = as
a probability distribution; the ith row is the marginal of x on the ith cloud.

Write 2 as 2l + 1, where 2!l is parallel to uy, (where u is the normalized all-ones vector) on each cloud.
Visualize 2/l and 2 as matrices of the same dimension as .

zlh=y® up,, for some unique vector y in R, Note that y is perpendicular to u, .
Azl = (A © As)(y @ un,) = (A1y ® Asun,)

upy, is an eigenvector with eigenvalue 1.
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||Azll|| = || A1y|| - ||un,|| (operator norm is multiplicative on tensor product)

The matrix shrinks the Ly norm of the vector by its second largest eigenvalue, so we have A, ||yl| - |[|un, || =

e, [l l]
Now we consider ||Azt||.

Each row of 2+ is perpendicular to the all-ones vector. If Ay acts on = it wil shrink each row by A (i.e.
[[A2(z )1l < Aga [l(@h)1l).

||Axl|| = (A @A)zt = (A4 ® In,) Iy, ® Ay)xt because the matrices are of right dimension, so we can
use the tensor property that we discussed earlier.

How does (Iy, ® As) act on -7 Each row will be Ay times the corresponding row. It shrinks each row of
1
T by )\G2~

Az ] = A, [[A ][ - [[aH]] <1 < A, ||l ]

We have finished both the calculations, so we will finish the proof now. In one term we get A\g,, and in the
other we get Ag,.

||Az|| is equal to ||A(zl + z1)||. By the triangle inequality, ||A(z!l + z1)|| < ||Azl|| + ||AzL|| < Aa,||2!]] +
Aai Izl < (Aey + gl

But this is a worse bound then we promised. We promised max, not sum. In order to get a better bound,
we observe that, if we can show that Azl and Az’ are orthogonal vectors, we can use the Pythagorean
Theorem instead of the triangle inequality to get a stronger bound.

Claim 8.1 Azl and Azt are orthogonal vectors.

Proof:

Az is perpendicular to uy, on each cloud because, in the expression (A1 ® Iy, )(Iy, ® Az)z*, the application
of A, keeps the vector perpendicular, and the application of A; replaces each cloud with a linear combination
of clouds, which also preserves the orthogonality.

Azl remains parallel to uy, on each cloud because zll = y @ uy, Azl = (A; ® A2)(y @ un,) = (A1y @ un,).

Thus, Azl and Azt are orthogonal vectors. [ ]

We can now give the desired stronger bound using the orthogonality of the two vectors:
1 Az[[* = [[Az [P +]Az][> < NG, [lat P42, ||21]]* < max{Aa,, A, P (Il2]]*+z " |?) = max{ha, . Ag, 1|2
| Az|| < max{Ac,, A, }|=|

8.5 Concluding Remarks

We will cover the zigzag product in the next class.
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