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8.1 Expanders - Explicit constructions

In this lecture, we formulate ways to take products of graphs to construct larger expander graphs.

New notation: Let a (N,D, γ)-graph be a (N, γ) spectral expander that is D-regular.

Our approach: start with small graphs and iteratively construct larger graphs.

8.2 Squaring Graphs

Intuitively, squaring is just 2 hops on the original graph. Note that self loops and multiple edges are allowed
in squared graphs.

Formally, if we have a graph G = (V,E), let G2 = (V,E′) be a graph such that, for all v in V , the (i, j)th
neighbor of v is the jth neighbor of the ith neighbor of v, where i, j ∈ [D] (are numbers from 1 to D).

This operation doesn’t add any nodes, and it squares the number of edges. A2 is the normalized adjacency/random-
walk matrix of G2. Hence, λ(G2) = λ(G)2.

• degree increases :(

• nodes remain same :/

• expansion improves :)

8.3 Tensor Products

For V in Rn, W in Rm, the tensor product of V and W is denoted as Z = V ⊗W ∈ Rnm. It is a generalization
of the outer product.

For two vectors, we define their tensor product to be a matrix, such that zij = viwj , i ∈ [n], j ∈ [m]. For two
matrices A ∈ Rn1

×Rn2
, B ∈ Rm1

×Rm2
, the entries of the tensor product C = A⊗B are as follows:

Ci1i2j1j2 = Ai1j1Bi2j2

Some properties of tensor products:

1. A⊗ (B + C) = A⊗B +A⊗ C

2. in general, A⊗B 6= B ⊗A

3. (A⊗B)(C⊗D) = (AC⊗BD) if AC and BD are defined by the standard rules of matrix multiplication
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4. (A⊗B)T = AT ⊗BT

With property number 3, if An×n and Bm×m are matrices and Cn and Dm are vectors, A effectively acts
just on C and B just on D. This is a major part of the intuition for why tensor products can be useful.

8.4 Tensor Products of Graphs

Suppose we have G1, G2, such that:
G1 is an (N1, D1, γ1)-graph, and its adjacency matrix is M1.
G2 is an (N2, D2, γ2)-graph, and its adjacency matrix is M2.

Then, we define the tensor product of G1 and G2 to be G = G1 ⊗G2.

The adjacency matrix of G is M1 ⊗M2. The set of vertices of G is [N1]× [N2]. (v, j) is a neighbor of (u, i)
if (u, v) is in EG1

, (i, j) in EG2
.

To visualize this, make 4 “clouds” that are copies of the vertices of G2; each cloud represents one vertex of
G1. Draw an edge between two vertices in different clouds if the vertices corresponding to the clouds in G1

are connected, and the vertices corresponding to the positions in the intra-cloud graph are connected in G2.

Now, we analyze the spectral expansion of G.

The eigenvalues of A1⊗A2 are λi(G1)λj(G2), i ∈ [N1], j ∈ [N2] – the largest eigenvalue is 1 ·1, so the second
largest is 1 · λG1 or 1 · λG2 .

G is (N1N2, D1D2,min(γG1
, γG2

)).

• degree increases :(

• nodes increase :)

• expansion remains same :/

There is a more inituive proof of the spectral expansion for tensor products that helps build the intuition
needed to think about the zig-zag product. The rest of this scribed document will be focused on this proof.

8.4.1 Intuitive Proof of Spectral Expansion for Tensor Products

A = A1 ⊗A2

w.t.s. that ||Ax|| ≤ λ||x||, x ⊥ 1N1N2

x is a long vector, but we’ll think of it as the flattened out form of a matrix that is N1 ×N2. Think of x as
a probability distribution; the ith row is the marginal of x on the ith cloud.

Write x as x‖ + x⊥, where x‖ is parallel to uN2
(where u is the normalized all-ones vector) on each cloud.

Visualize x‖ and x⊥ as matrices of the same dimension as x.

x‖ = y ⊗ uN2 , for some unique vector y in RN1 . Note that y is perpendicular to uN1 .

Ax‖ = (A1 ⊗A2)(y ⊗ uN2
) = (A1y ⊗A2uN2

)

uN2
is an eigenvector with eigenvalue 1.



Lecture 8: September 24th 8-3

||Ax‖|| = ||A1y|| · ||uN2
|| (operator norm is multiplicative on tensor product)

The matrix shrinks the L2 norm of the vector by its second largest eigenvalue, so we have λG1
||y|| · ||uN2

|| =
λG1
||x‖||

Now we consider ||Ax⊥||.

Each row of x⊥ is perpendicular to the all-ones vector. If A2 acts on x⊥ it wil shrink each row by λ (i.e.
||A2(x⊥)1|| ≤ λG2 ||(x⊥)1||).

||Ax⊥|| = (A1 ⊗ A2)x⊥ = (A1 ⊗ IN2
)(IN1

⊗ A2)x⊥ because the matrices are of right dimension, so we can
use the tensor property that we discussed earlier.

How does (IN1
⊗ A2) act on x⊥? Each row will be A2 times the corresponding row. It shrinks each row of

x⊥ by λG2
.

||Ax⊥|| = λG2 ||A1|| · ||x⊥|| ≤ 1 ≤ λG2 ||x⊥||

We have finished both the calculations, so we will finish the proof now. In one term we get λG1
, and in the

other we get λG2 .

||Ax|| is equal to ||A(x‖ + x⊥)||. By the triangle inequality, ||A(x‖ + x⊥)|| ≤ ||Ax‖||+ ||Ax⊥|| ≤ λG2
||x‖||+

λG1
||x⊥|| ≤ (λG1

+ λG2
)||x||.

But this is a worse bound then we promised. We promised max, not sum. In order to get a better bound,
we observe that, if we can show that Ax‖ and Ax⊥ are orthogonal vectors, we can use the Pythagorean
Theorem instead of the triangle inequality to get a stronger bound.

Claim 8.1 Ax‖ and Ax⊥ are orthogonal vectors.

Proof:

Ax⊥ is perpendicular to uN2
on each cloud because, in the expression (A1⊗IN2

)(IN1
⊗A2)x⊥, the application

of A2 keeps the vector perpendicular, and the application of A1 replaces each cloud with a linear combination
of clouds, which also preserves the orthogonality.

Ax‖ remains parallel to uN2
on each cloud because x‖ = y ⊗ uN2

Ax‖ = (A1 ⊗A2)(y ⊗ uN2
) = (A1y ⊗ uN2

).

Thus, Ax‖ and Ax⊥ are orthogonal vectors.

We can now give the desired stronger bound using the orthogonality of the two vectors:

||Ax||2 = ||Ax⊥||2+|Ax‖||2 ≤ λ2G2
||x⊥||2+λ2G1

||x‖||2 ≤ max{λG1
, λG2

}2(||x‖||2+|x⊥||2) = max{λG1
, λG2

}2||x||2

||Ax|| ≤ max{λG1
, λG2

}||x||

8.5 Concluding Remarks

We will cover the zigzag product in the next class.
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