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7.1 Proof of Expander Chernoff Bound

Let G = (V,E) be an (N, γ) spectral expander that is D-regular.

Define a random walk of length t as l1 → l2...→ lt, such that l1 is chosen randomly from V and each li+1 is
a random element of the neighbors of li.

Claim 7.1 For all f : [N ]→ [0, 1], Pr

[∣∣ 1
t

∑
i f(li)− µf

∣∣ > (δ + λ)

]
≤ e−Ω(δ2t), where µi = Ej∼[n](f(j)).

Proof: Define Xi = f(li). Define X =
∑t
iXi.

The goal of this proof will be to bound ∆ = Pr[X ≥ (δ + λ+ µf )t].
Mirroring the proof of the Chernoff bound, ∆ = Pr[erx ≥ er(δ+λ+µf )t].

Applying Markov’s inequality, Pr[erx ≥ er(δ+λ+µf )t] ≤ E[erx]

er(δ+λ+µf )t .

Next, the goal of this proof is to express E[erx] linear algebraically.

Define the diagonal matrix Df =


erf(1)

erf(2)

. . .

erf(N)

, with zeros elsewhere.

Let u = 1
N

−→
1 . E[erx] = ||uDf (ADf )t−1||1 (this equality is a linear algebraic interpretation of expectation).

Next, we will attempt to bound this quantity. ||uDf (ADf )t−1||1 = ||uADf (ADf )t−1||1 = ||u(ADf )t||1 since

uA = A, as
−→
1 is an eigenvalue of this matrix.

Applying Cauchy-Schwarz and then the submultiplicativity of the L2 norm:
||u(ADf )t||1 ≤

√
N ||u(ADf )t||2 ≤

√
N ||u||2||(ADf )t||2 =

√
N∗ 1√

N
||(ADf )t||2 = ||(ADf )t||2. Next, applying

submultiplicativity again: ||(ADf )t||2 ≤ (||ADf ||2)t. Now, we aim to bound ||ADf ||2.
We will apply the matrix decomposition lemma from a previous lecture:

Lemma 7.2 The adjacency matrix A of a spectral expander with expansion γ = 1− λ can be decomposed
as A = γJ + λE. such that J is 1

N times the all ones matrix, ||E||2 ≤ 1, and γ, λ are scalars.

This lemma has an interesting interpretation in the context of expander graphs. Since J is the normalized
adjacency matrix of a fully connected graph, random walks on such a graph converge to uniformity very
quickly. Since the adjacency matrix A deviates from J by a small amount (a matrix E with spectral norm
less than or equal to 1), this means that an expander is not far from one whose random walks converge to
uniformity quickly.

Continuing with the proof of the Expander Chernoff bound, and specifically bounding ||ADf ||2, ||ADf ||2 ≤
γ||JDf ||2+λ||EDf ||2 (using the triangle inequality and the matrix decomposition lemma). ||JDf ||2, ||EDf ||2
will be bound individually to bound ||ADf ||.
||EDf ||2 ≤ ||E2||2||Df ||2 ≤ 1 ∗ ||Df ||2 ≤ maxi∈[N ](e

rf(i)). Since f(i) ∈ {0, 1}, er∗f(i) ≤ er ≤ 1 + r + O(r2)
using a Taylor expansion.
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||JDf ||2 = maxx∈Rn,||x||2=1||JDfx||2. Looking at JDfx, it is equal to J ∗ (x1e
rf(1), x2e

rf2 , ...xne
rf(n)) =

1
N

∑N
i=1 xie

rf(i)·−→1 . Hence, ||JDfx||2 ≤ 1
N |
∑N
i=1 xie

rf(i)|∗
√
N = 1√

N
|
∑N
i=1 xie

rf(i)|. This is bounded above

by 1√
N

(
∑
x2
i )

1
2 (
∑
e2rf(i))

1
2 . Applying a Taylor expansion, this is bounded above by 1√

N
(
∑N
i=1(1 + 2rf(i) +

O(r2)))
1
2 . Since f(i) ∈ [0, 1], this can be again bounded by 1√

N
(N + 2rµfN +NO(r2))

1
2 ≤ 1 + rµf +O(r2)

(the last step is justified by the Taylor series for f(x) =
√
x.

Using these bounds (and that λ+ γ = 1) ||ADf ||2 ≤ γ(1 + rµf ) +λ(1 + r) +O(r2). ≤ 1 + r(λ+µf ) +O(r2).

Next, E[erx] ≤ (||ADf ||2)t ≤ ert(λ+µf )+O(r2)t. Plugging this bound into the bound from Markov’s inequality,

∆ ≤ E[erx]

er(δ+λ+µf )t . ≤ ert(λ+µf )+O(tr2)

ert(λ+µf )+rtδ = eO(r2t)−rtδ. Choosing r = δ
C , such that C is a large constant, this yields

the desired bound of e−Ω(δ2t).

7.2 Using the Expander Mixing Lemma for Error reduction in
BPP

Let A be an algorithm for L ∈ BPP that uses R bits of randomness and time T . Remember that ∀x ∈
L, y ∼ [0, 1]R, P r[A(x, y) = 1] ≥ 2

3 , and ∀x 6∈ L, y ∼ [0, 1]R, P r[A(x, y) = 0] ≥ 2
3

Take an expander G on [2R] nodes, λ = δ = 1
20 (and D = O(1) probabilistically). Now, for a fixed x, define

the function f : [2R]→ [0, 1], where f(y) returns 1 if A(x, y) is correct, and 0 otherwise. Since the two sided
success probability of A is 2

3 , f(y) = 1 for at least 2
3 of random bit strings, so µf ≥ 2

3 .

Define A′ to run A(x, l1), A(x, l2), ...A(x, lt), where l1, l2, ..., lt are random bitstrings of length R taken from
a random walk of expander G, and output the majority answer from these t executions.

Now, since δ, λ, are constant, µf ≥ 2
3 , and µf − δ − λ ≥ 1

2 , the error probability of A′ is bounded by e−Ω(t).
Defining this error probability as ε, reducing the error probability to ε requires O(log( 1

ε )) executions of A.
The random bits required for this algorithm are R bits to sample the first vertex in the walk, and then
O(log( 1

e )) random bits (a constant number of bits per iteration of the A to take a step in the expander
walk.)

Making a table of time vs random bits required for various error reduction techniques for BPP algorithms
shows that this approach is both efficient in terms of random bits and time.

Error Reduction Technique Time Random Bits
Expander Walk T ·O(log( 1

ε )) R+O(log( 1
ε ))

I.i.d Repetitions T ·O(log( 1
ε )) R ·O(log( 1

ε ))
Pairwise Independent Repetitions T ·O( 1

ε ) R+ 2log( 1
ε ) +O(1)

7.3 Bounds on Expansion of Graphs

Definition 7.3 The spectral gap, γ of a graph is 1 − λ, where λ is the second largest eigenvalue of the
graph’s normalized adjacency matrix.

Theorem 7.4 [Alon-Boppana]: λ ≥ 1
D2
√
D − 1− oN (1), where G is D regular.

A result of Ramanujan is that there exist graphs (Ramanujan expanders) for which λ ≤ 2
√
D−1
D , which nearly

achieve the bound of Alon and Boppana.
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Claim 7.5 We will show a weaker result, that λ ≥
√
D − 1− oN (1).

Let M be the unnormalized adjacency matrix of expander G. By inspection, tr(M2) is equal to the number
of length 2 walks that start and end at the same vertex of G. This quantity is bounded above by ND, since
each vertex can have a maximum of D length 2 walks for each of the D vertices leaving it.

By the properties of eigenvalues, tr(M2) = D2
∑N
i=1 λ

2
i , where λi is the ith eigenvalue of A, the normalized

adjacency matrix of G.

Combining these bounds, tr(M2) = D2
∑N
i+1 λ

2
i ≤ ND. Subtracting the largest eigenvalue and dividing

yields D2
∑N
i=2 λ

2
i ≤ ND − D2 and

∑N
i=2 λ

2
i ≤ N−D

D . Finally, bounding each eigenvalue by λ2 yields that

λ2 ≥
√

N−D
DN .

Finally, if D � N (which is achievable since D can be O(1)), this yields the desired bound.

7.4 Explicit Constructions of Expanders

Definition 7.6 The Margulis-Gabbard-Galil Construction is a graph where V = Zm × Zm, and the edges
satisfy (x, y)→ (x± y, y), (x, y)→ (x± (y + 1), y), (x, y)→ (x, x± y), or (x, y)→ (x, y ± (x+ 1)).

This construction achieves (m2, γ) expansion, where γ is a constant greater than 0. This graph is 8-regular
and strongly-explicit (see definition below). The proof that this is an expander is beyond the scope of this
class.

Definition 7.7 We will say that the construction of a graph on N nodes is strongly explicit if there exists
an algorithm that determines whether there is an edge between any two vertices in poly(log(N)) time.

Definition 7.8 We will say that the construction of a graph on N nodes is mildly explicit if there exists an
algorithm that runs in time poly(N) and outputs the adjacency matrix of the graph.

We will study a more combinatorial construction of an expander. The approach will be to start with a
constant sized expander (which we know exists from the probabilistic method, and hence can be found by a
brute-force search in constant time) and create larger expanders graphs via using various graph products,
such as graph squaring, the tensor product, and the zig-zag product.
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