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4.1 Overview

Today, we cover two definitions of Expander Graphs, which can be loosely described as ”sparse, well-
connected graphs,” as well as introduce the statement of the Expander Mixing Lemma.

4.2 Vertex Expander

Definition 4.1 Let G = (V, E) be an undirected, D-regular graph with N vertices. G is a (k, A) expander
if ∀S ⊆ [N ], |S| ≤ k, |N(S)| ≥ A(S), we have that N(S) = {v ∈ [N ]|∃e = {u, v} for some u ∈ [N ]}.

We will think of each undirected edge {u, v} as two directed edges (u, v) and (v, u).

The probabilistic method can be used to prove the following: (we saw a proof of this in class)

Lemma 4.2 There are expander graphs with D = O(1) i.e. very sparse, k = Ω(N) i.e. of constant density,
A = Ω(1) i.e. limited by a constant (not the number of vertices).

4.3 Preliminaries

4.3.1 Linear Algebra Refresher

Theorem 4.3 (Spectral Theorem for Symmetric Matrices) If M ∈ Rn×m is symmetric, ∃ orthonor-
mal vectors, v1, ..., vn (the eigenvectors of M) and real numbers λ1 ≥ ... ≥ λn (the eigenvalues of M)
such that Mvi = λivi ∀i ∈ [n].

Definition 4.4 (Rayleigh Quotient) For M ∈ Rn×m, x ∈ Rn, we define R(M,x) ≡ x>Mx
x>x

.

Claim 4.5 maxx∈RR(M,x) = λ1.
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Proof: Let ~x =
∑n
i=1 αi~vi. We see that

x>Mx =

( n∑
i=1

αi~vi

)>
M

( n∑
i=1

αi~vi

)

=

( n∑
i=1

αi~vi

)>( n∑
i=1

λiαi~vi

)

=

n∑
i=1

α2
iλi.

From this, we can conclude that x>Mx ≤ λ1(
∑n
i=1 α

2
i ) ≤ λ1.

Claim 4.6 maxx⊥ span(~vi,...,~vi−1)R(M,x) = λi. In particular, λ2 = maxx∈|Rn|,|λ1|2=1,x⊥v1 R(M,x).

4.3.2 Notation

Let A be a normalized adjacency matrix of G, i.e. A(i, j) =

{
1
D (i, j) ∈ E
0 otherwise

Claim 4.7 (1) λ1 = 1, (2) λn ≥ −1, (3) λ2 = 1 if and only if G is disconnected.

Proof:
1. A~1 = 1 ·~1→ λ1 ≥ 1∑

i<j(xi − xj)2Aij = x>x− x>Ax.

We rearrange to get x>Ax = x>x −
∑
i<j(xi − xj)2Aij → |x>Ax| ≤ x>x → R(A, x) ≤ 1∀x ∈ Rn →

λ1 ≤ 1.

2. Left as an exercise to the reader.

3. Assume ||x||2 = 1 and x>Ax = 1 −
∑
i<j(xi − xj)2Aij . Recall that λ2 = maxx∈Rn,||x||2=1,x⊥~1 x

>Ax.

This is equivalent to λ2 = 1−infx∈Rn,||x||2=1,x⊥~1
∑
i<j(xi−xj)2Aij. We know that

∑
i<j(xi−xj)2Aij =

x>x−x>Ax = 0, since x is normalized, making x>x = 0, and setting Ax = λ2x. Note that
∑
i<j(xi−

xj)
2Aij is known as the Laplacian of a matrix. We observe that while there must exist positive and

negative entries, as the Euclidean norm of x is 1, there cannot exist any edge between coordinates of
different signs (xi = xj for nonzero Aij), as this would mean that the Laplacian would be nonzero.
Therefore, the graph has at least two components, and is not connected. The other direction of the
proof is left as an exercise to the reader.

4.4 Spectral Expander

Definition 4.8 Let G = (V, E) be an undirected, D-regular graph with N vertices. Recall that λ(G)(≡
max{|λ2|, |λN}|). G is a (N, α) spectral expander if λ(G) =≤ 1− α.

4.5 Expander Mixing Lemma

Let be the second largest eigenvalue of the normalized adjacency matrix of the graph G. For any two subsets of
vertices, let E(S, T ) denote the number of edges between S and T . Thus, recalling that we think of undirected
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edges as two directed edges, E(S, T ) counts each edge between S and T twice.

Lemma 4.9 Let G = (N,α) be a spectral expander. ∀S, T ⊆ [N ], we have∣∣∣∣E(S, T )

ND
− αβ

∣∣∣∣ ≤ λ√αβ(1− α)(1− β)

with |S|N = α, |T |N = β. Note that the last two terms under the square root may be omitted for sufficiently

small α, β (or equivalently, for sufficiently large |S|N , |T |N ). Further, note that we do not require S and T to
be disjoint.
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