
CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 22: November 19
Lecturer: Eshan Chattopadhyay Scribe: Benjamin Y Chan

22.1 Space bounded derandomization: Nisan’s generator

In this lecture, we explore how to derandomize space-bounded computation. In particular, recall the notation
we use to describe algorithmic space-complexity:

Definition 22.1 (DSPACE, BPSPACE)

DSPACE(s(n)) = {L : ∃ a deterministic Turing Machine deciding L using O(s(n)) space}
BPSPACE(s(n)) = {L : ∃ a deterministic TM ML deciding L using O(s(n)) space,

with single-pass read-only input tape, and 2-sided bounded error

s.t. ∀x ∈ {0, 1}∗, Pr
r

R←−{0,1}∗
[ML(x, r) = L(x)] ≥ 2/3}

Here L(x) = 1 if x ∈ L, and L(x) = 0 if x /∈ L. Note that we can alternatively characterize the deterministic
Turing Machine with random string input, as a ‘probabilistic’ Turing Machine.)

The central open question with regards to space-bounded derandomization is the following:

Open Question 22.2 (Space Bounded Derandomization) For s(n) ≥ c · log n (for constant c), does

BPSPACE(s(n))
?
= DSPACE(s(n))

In this lecture we show the following weaker result:

Lemma 22.3 For s(n) ≥ c · log n,

BPSPACE(s(n)) = DSPACE((s(n))2)

Note that in the state of the art, it is known that BPSPACE(s(n)) = DSPACE((s(n))1.5), but we will not
cover that.

22.2 Read-once Branching Programs

To reason about space-bounded algorithms, we introduce a non-uniform model of computation called ‘Read-
Once Branching Programs’ (ROBPs) that exactly capture the power of space-bounded TMs.

Definition 22.4 ((n,w)-ROBP) A (n,w)-ROBP is a tuple (G = (V,E), AE , AV) of a directed graph G,
an assignment on the edges AE : |E| → {0, 1}, and an assignment on the vertices AV , with the following
structure:

22-1

22-2 Lecture 22: November 19

• (layered structure): Each vertex v ∈ V is contained in one of n + 1 disjoint sets of vertices,
L0, L1, ..., Ln, and where for each edge (u, v) it is drawn between two adjacent layers, s.t. u ∈ Li and
v ∈ Li+1 where i ∈ {0, ..., n− 1}. Moreover, each Li contains exactly w vertices.

• (edges representing binary decisions): For each vertex v ∈ V , it is the source of exactly two edges
in E, denote e1 and e2. Moreover, exactly one of these edges is labeled with a 1, and the other is labeled
with a 0 (by AE).

• (start, accept, reject states): There exists v ∈ L0 such that AV (v) = start. Finally, ∀v ∈ Ln,
AV (v) ∈ {accept, reject}.

We can now interpret a ROBP as taking an input x ∈ {0, 1}n. Denote x = x0x1...xn. To ‘run’ this program,
we start at the start vertex (in layer L0), and then for each bit xi ∈ {0, 1}, follow the edge corresponding to
the value of the bit, moving into layer Li. If we end at a vertex labelled accept, output ‘accept’. Else, we
end at a vertex labelled reject, and so we output ‘reject’.

Another way to interpret a ROBP is as a function f : {0, 1}n → {accept, reject}. Note that these ROBP’s
are a non-uniform model of computation, in the sense that inputs with different lengths can be processed by
ROBPs of different size. Note that for a (n,w)-ROBP, we also call n the ‘length’ of the ROBP, and w its
width.

Now, we connect ROBPs and the power of space-bounded randomized algorithms.

Lemma 22.5 Let A(·, R) be a randomized algorithm using space s(n) and |R| random bits. Fix an input z
to A, and define B(·) := A(z, ·). Then B can be computed by a (2s(n), 2s(n))-ROBP.

Proof Sketch: First, observe that a tape of length s(n) has 2s(n) possible configurations. Construct a
ROBP simulating B:

• Each layer Li contains 2s(n) vertices. Let each vertex correspond to a different configuration of the
tape, such that in the course of running the ROBP, our location in the BP corresponds to an equivalent
state of the Turing Machine.

• Denote the start state the vertex corresponding to the starting configuration of B.
• Moreover, for each state configuration u ∈ Li, draw two edges (u, v0), (u, v1) (labelled 0 and 1 respec-

tively) where v0 corresponds to the state of B after starting in u and reading a random bit 0, and v1
corresponds to reading a random bit 1.

Finally, note that the ROBP has a length of 2s(n), because there are only 2s(n) configurations of B’s working
tape, by a simple counting argument any execution of length > 2s(n) must revisit a configuration; and thus
by some very unlucky random input a corresponding B would loop forever, which is a contradiction.

Note that it is important that the random tape cannot be used to store additional state; in particular,
depending on the model, we should not be able to encode state in the head location on the random tape.

22.3 Nisan’s PRG

In this section we present Nisan’s PRG construction (or rather, a ‘morally’-equivalent version).

In order to prove that BPSPACE(s(n)) = DSPACE(s(n)), it suffices to show a s(n)-space computable PRG

G : {0, 1}O(log ((2s(n))2)) → {0, 1}2s(n)

, that fools the class of (2s(n), 2s(n))-ROBPs for some small ε = 1/10.
(Note that the log term is log (` · w), where ` is the length of the ROBPs we want to fool, and w is the
width. We want to generate ` bits of randomness, in order to execute any program. Then, we can run our

Lecture 22: November 19 22-3

ROBP for every possible preimage, of which there are O(2s(n)), but each run takes only s(n) space, so this is
allowed; then take the majority output.) A proof is not given in class, and left as an exercise for the reader.

To prove that BPSPACE(s(n)) = DSPACE((s(n))2), which we do here, it suffices to show that:

Lemma 22.6 (Nisan’s PRG) For any `, w, ∃ an O(d)-space efficient (and O(poly(n))-time efficient) PRG
G : {0, 1}d → {0, 1}` with seed-length d = O(log ` · log `w

ε), with ε = 1/10 error, indistinguishable by (`, w)-
ROBPs.

Let B be any (`, w)-ROBP. Let D denote a pseudorandom distribution generated by the PRG (which we will
show how to construct) on a uniform random seed. We want to show that |Pr[B(U`) = 1]−Pr[B(D) = 1]| ≤ ε
for ε = 1/10 and all such B (Uniform Computational Indistinguishability).

Before we get to the proof, first we look at a naive attempt.

Imagine the following PRG construction with seed length `/2. Of course this seed length is not close to the
desired O(log(`w)), but it helps illustrate a key idea in Nisan’s construction. First, cut the distinguisher
ROBP B in half, where the first half comprises the first `/2 layers, and the second half the last `/2 layers.
Now, we use the seed y = y1y2...y`/2 to traverse the first `/2 layers of the ROBP; denote this B`/2(y).
Let V`/2 denote the random variable representing the possible ending locations in layer L`/2; clearly V`/2 is
indistinguishable from B`/2(U`/2).

We hope to reuse the seed y for the second half. Unintuively (perhaps), for any vertex v ∈ L`/2, the entropy
of the seed conditioned on us reaching v can be lost, namely H(y | B`/2(y) = v) 6= `/2− logw. To see why,

notice that if some v were reachable by only a single path, then Pr[B`/2(U`/2) = v] = 2−n/2. So we cannot
reuse the seed in a naive way!

Instead, we can sample an additional z := O(log `w) random bits, so the seed length |y| + |z| is now

`/2 + O(log `w) bits. Denote z = Ext(y, z)
ε
≈ U`/2, where

ε
≈ denotes ε-ROBP indistinguishability. Then we

can use z to finish the walk on the second half of B. This idea that there is a set of vertices in L`/2 such
that the probability of reaching them is not too low - thus V`/2 is a weak-source - ends up being crucial to
the construction.

For Nisan’s construction, we assume a nice extractor, that is reminiscent of the expander-walk extractor (we
do not show its existence):

Lemma 22.7 For any ε′ > 0, i, there exists a function:

Exti : {0, 1}i·dExt × {0, 1}dExt → {0, 1}i·dExt

such that Exti is an (i · dExt − logw − log(1/ε′), ε′)-seeded extractor with dExt = O(log (w/ε′)).

We now proceed to prove Lemma 22.6.

Proof: We present a recursive construction, on i. For every 0 ≤ i ≤?:

By Lemma 22.7 we have Exti where Exti is an (i ·dExt− logw− log(1/ε′), ε′)-seeded extractor. Now construct

the function Gi : {0, 1}i·dExt → {0, 1}2i as follows:

Gi(y‖z) =

{
Gi−1(y)‖Gi−1(Exti−1(y, z)) i > 1

y‖z i = 1

Note that |y| = dExt · (i− 1) and |z| = dExt. Thus, in the base case, we have G1(x) = x for |x| = dExt.

22-4 Lecture 22: November 19

Let G = Glog ` : {0, 1}log (`)·O(log (w/ε′)) → {0, 1}`. This gives seed length dG = log (`) · O(log (w/ε′)). We
also choose ε′ s.t. ε = 4log ` · ε′. We now show that for all distinguishing (`, w)-ROBPs B, |Pr[B(U`) =
1]− Pr[B(G(UdG)) = 1]| ≤ ε.

We do so by induction on i. First, denote Bv,m the program starting at vertex v (in some layer Li), such
that it reads an input of length m and outputs v′ ∈ [w], the vertex it stops at (in some layer Li+m) (as
opposed to {0, 1}, or accept, reject). Then, denote εi = 4i · ε′. We prove that:

∀v, i Bv,2i(U2i)
εi≈ Bv,2i(Gi(Ui·dExt

)) (22.1)

Where
εi≈ denotes statistical distance ≤ εi. Proving this statement 22.1 finishes the proof.

Proof by induction on i. For the base case, where i = 1, and clearly since G1(UdExt
) = UdExt

, then
Bv,dExt

(UdExt
) and Bv,dExt

(Gi(UdExt
)) are identically distributed.

For the inductive step, we prove that for all i >= 1, assuming statement 22.1 is true for i, then the statement
is also true for i+ 1, by hybrid argument. Consider the following 4 hybrids:

D1 : U2i−1 ‖ U ′2i−1

D2 : U2i−1 ‖ Gi−1(U ′dExt·(i−1))

D3 : Gi−1(UdExt·(i−1)) ‖ Gi−1(U ′dExt·(i−1))

D4 : Gi−1(UdExt·(i−1)) ‖ Gi−1(Exti−1(UdExt·(i−1)), U
′
dExt

)

(Note that Uc, U
′
c denote independent uniform random variables of length c)

• Bv,2i(D1)
εi−1≈ Bv,2i(D2).

Proof: by the correctness of Gi−1; we know that ∀Bv′,2i−1

Bv′,2i−1(Gi−1(U ′dExt·(i−1)))
εi−1≈ Bv′,2i−1(Gi−1(U ′2i−1))

Note that under both D1 and D2 the parent program Bv,2i reaches vertex v′ in layer L2i−1 with equal
probability. Thus, for any x ∈ [w],

Pr[Bv,2i(D1) ∈ T] =
∑
v′∈[w]

Pr[Bv,2i−1(U2i−1) = v′] · Pr[Bv′,2i−1(U ′2i−1) ∈ T]

Pr[Bv,2i(D2) ∈ T] =
∑
v′∈[w]

Pr[Bv,2i−1(U2i−1) = v′] · Pr[Bv′,2i−1(Gi−1(U ′dExt·(i−1))) ∈ T]

So by this being a convex combination Pr[Bv,2i(D2) ∈ T] and Pr[Bv,2i(D1) ∈ T] differ by at most εi−1.

• Bv,2i(D2)
εi−1≈ Bv,2i(D3). By the same argument as in D1 ≈ D2.

• Bv,2i(D1)
2·ε′
≈ Bv,2i(D2). This case is less straightforward:

First, some definitions. Denote, for any fixed distinguisher Bv,2i :

p(u) := Pr[Bv,2i−1(Gi−1(UdExt(i−1))) = u]

Bad := {u ∈ L2i−1 : p(u) ≤ ε′/w}

Intuitively, this Bad set contains vertices in the middle layer which Bv,2i rarely reaches: as a result,
an execution that traverses u ∈ Bad in the middle layer is rare and thus the associated input string
has low entropy. (Again, by the intuition we built previously, conditioned on reaching u, we know too
much about the input and cannot reuse the seed).

Lecture 22: November 19 22-5

Now, we need to show that executions that reach a middle point that is not Bad can reuse its seed:

∀q /∈ Bad, (Exti−1(UdExt(i−1), UdExt
) | (Bv,2i−1(Gi−1(UdExt(i−1))) = q))

ε′

≈ UdExt(i−1)

This equates to showing:

H∞(UdExt(i−1) | Bv,2i−1(Gi−1(UdExt(i−1))) = q) ≥ dExt(i− 1)− logw − log (1/ε′)

(which is left as an exercise). Then we choose an Exti−1 that can handle a k = dExt(i− 1)− logw −
log (1/ε′) weak source, as given by Lemma 22.7. Finally, we compute the probability we reach any
u ∈ Bad, by union bound, which has maximum size w and thus the sum of p(u) is ≤ ε′.

Finally, by triangle inequality then

|Bv,2i(D1)−Bv,2i(D4)| ≤ 2 · εi−1 + 2 · ε′

= 2 · 4i−1 · ε′ + 2 · ε′

≤ 4i · ε′

= εi

	Space bounded derandomization: Nisan's generator
	Read-once Branching Programs
	Nisan's PRG

