
CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 15: October 22
Lecturer: Eshan Chattopadhyay Scribe: Sloan Nietert

15.1 Unique decoding of Reed-Solomon codes

Recall that each message of the [n, k, d]q Reed-Solomon (RS) code corresponds to a polynomial p of degree at
most k−1 over Fq (n ≤ q) and is encoded as the evaluation of p at n distinct points, (p(β1), . . . , p(βn)) ∈ Fnq .
Earlier, we proved that the distance of this code satisfies d = n − k + 1, achieving the Singleton bound.
Today, we will begin by completing our description and analysis of the Welch-Berlekamp unique decoding
algorithm for Reed-Solomon.

To start, we have a corrupted word y ∈ Fnq (we will take q = n) and view it as a function f : Fq → Fq, in
that y = (f(β1), . . . , f(βn)). Our promise is that there exists some p ∈ Poly≤k−1 such that

Pr
x∈Fq

[p(x) 6= f(x)] =
e

q
≤ 1

q

⌊
d− 1

2

⌋
,

where e counts the number of errors, i.e. the cardinality of T = {x ∈ Fq : f(x) 6= p(x)}. Thus, we have
e ≤ b(n− k)/2c. Our goal is to find p in poly(n) time.

The key idea is to consider an error locating polynomial E of degree e such that E(x) = 0 if and only if
f(x) 6= p(x). Then, we have that

E(x)f(x) = E(x)p(x)

for each x ∈ Fq. Expressing the polynomials as E(x) =
∑e
i=0 eix

i and p(x) =
∑k−1
i=0 mix

i, this gives a
system of quadratic equations which is NP-hard to solve in general. To make this tractable, we will use a
“linearizing trick”, solving for

N(x) = E(x)p(x),

a polynomial of degree at most e+ k − 1. Now, we can full describe the procedure.

Welch-Berlekamp Algorithm
Step 1: Compute a non-trivial solution to the following homogeneous system of linear equations

N(x) = E(x)f(x) ∀x ∈ Fq

N(x) =

t+k−1∑
i=0

nix
i E(x) =

t∑
i=0

eix
i

for the smallest t possible, starting at t = b(n− k)/2c ≥ e.
Step 2: If a solution is found and E(x) divides N(x), return N(x)/E(x). Otherwise, the error is uncor-
rectable, and the promise that e ≤ b(n− k)/2c has been broken.

These linear equations can be solved efficiently, so it just remains to prove correctness.

Claim 15.1 There exists a valid solution to Step 1.

15-1

15-2 Lecture 15: October 22

Proof: Simply take E∗ =
∏
α∈T (x − α) and N∗(x) = E∗(x)p(x). This implies that the value of t selected

for the solution is at most deg(E∗) = e.

Claim 15.2 If (N1, E1) and (N2, E2) are two valid outputs from Step 1, then N1/E1 = N2/E2.

Proof: We know that
N1(x)E2(x) = f(x)E1(x)E2(x) = N2(x)E1(x)

for each x ∈ Fq, so N1E2 −N2E1 has q = n roots. Further, this polynomial has degree at most

(e+ k − 1) + e = 2e+ k − 1 ≤ n− 1,

so it must in fact be the zero polynomial.

15.2 List decoding

The motivation for list decoding is to “go beyond d/2 errors” and, for any potential message, to provide a
reasonably small set of possible codewords which might have produced it.

Definition 15.3 A code C ⊂ Σn is (ρ, L)-list decodable if, for each y ∈ Σn,

|Ball(y, ρn) ∩ C| ≤ L,

where Ball(y, r) := {w ∈ Σn : ∆(y, w) ≤ r}.

List decodable codes are useful if L ≤ poly(n) and ρ > δ/2, particularly if ρ→ δ− o(1). Next, we introduce
the Johnson bound, which “translates good distance to good list decodable radius.”

Theorem 15.4 (Johnson Bound) If C ⊂ Fnq is an error-correcting code with relative distance δ(C) = 1−ε
(i.e. d = (1− ε)n), then C is a (1−

√
ε− o(1),poly(n))-list decodable code.

For the [n, k, d]q Reed-Solomon code, with d = n − k + 1, this translates to a list decodable radius of

1−
√

(k − 1)/n ∼ 1−
√
r. Information theoretic methods give a lower bound of 1− r− o(1), but is an open

question whether this can be achieved. Before continuing with the proof of the Johnson bound, we observe
two notable drawbacks. First, it is a combinatorial bound that is not algorithmic, and, second, it is not
tight for all codes.

Proof: Fix y ∈ Fq, and let c1, c2, . . . , cL be the codewords in Ball(y, ρn). Consider the following graph,

c1

c2

ci

cL

1

2

j

n

Lecture 15: October 22 15-3

where ci, j is an edge if and only if (ci)j = yj . Observe that (i) the left degree of any ci is at least (1− ρ)n
and that (ii) |N(ci) ∩N(cj)| ≤ n− d, where N(v) denotes the neighborhood of vertex v.

Next, we’ll consider the expected number of common neighbors between random distinct codewords ci, cj .
Letting λk denote the degree of right vertex k and λ̄ denote the mean degree of a right vertex, we have

n− d ≥ E[|N(ci) ∩N(cj)|] =

n∑
k=1

(
λk
2

)
(
L

2

) ≥
n

(
λ̄

2

)
(
L

2

) ,

where the second inequality follows from the convexity of the function x 7→
(
x
2

)
. By double counting, we also

know that λ̄ ≥ (1− ρ)L, so it follows that

(n− d)L(L− 1) ≥ nλ̄(λ̄− 1)

⇐⇒ (n− d)(L− 1) ≥ (1− ρ)2Ln− (1− ρ)n.

After a bit of algebra, we find that

L ≤ 1− ρ
(1− ρ)2 − ε

and choosing ρ = 1−
√
ε− 1/ poly(n) gives the desired L ≤ poly(n) bound.

	Unique decoding of Reed-Solomon codes
	List decoding

