CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 15: October 22
Lecturer: Eshan Chattopadhyay Scribe: Sloan Nietert

15.1 Unique decoding of Reed-Solomon codes

Recall that each message of the [n, k, d], Reed-Solomon (RS) code corresponds to a polynomial p of degree at
most k—1 over Fy (n < ¢) and is encoded as the evaluation of p at n distinct points, (p(51),---,p(6n)) € Fy.
Earlier, we proved that the distance of this code satisfies d = n — k + 1, achieving the Singleton bound.
Today, we will begin by completing our description and analysis of the Welch-Berlekamp unique decoding
algorithm for Reed-Solomon.

To start, we have a corrupted word y € Fy (we will take ¢ = n) and view it as a function f : F, — F,, in
that y = (f(B1),---,f(Bn)). Our promise is that there exists some p € Poly; _; such that

By (o) £ 0)] = £ < 1122

where e counts the number of errors, i.e. the cardinality of T = {z € F; : f(z) # p(z)}. Thus, we have
e < |(n—k)/2]. Our goal is to find p in poly(n) time.

The key idea is to consider an error locating polynomial E of degree e such that E(z) = 0 if and only if
f(x) # p(z). Then, we have that

for each x € F,. Expressing the polynomials as F(z) = >.;_, ez’ and p(z) = Zf;ol mxt, this gives a

system of quadratic equations which is NP-hard to solve in general. To make this tractable, we will use a
“linearizing trick”, solving for

a polynomial of degree at most e + k — 1. Now, we can full describe the procedure.

Welch-Berlekamp Algorithm
Step 1: Compute a non-trivial solution to the following homogeneous system of linear equations

N(z) =E(z)f(z) VxeTF,

t+k—1 t

N(z) = Z niz'  E(x) = Zeixi
i=0 '

for the smallest ¢ possible, starting at t = |(n — k)/2| > e.

Step 2: If a solution is found and E(z) divides N(z), return N(z)/E(x). Otherwise, the error is uncor-
rectable, and the promise that e < |(n — k)/2] has been broken.

These linear equations can be solved efficiently, so it just remains to prove correctness.

Claim 15.1 There exists a valid solution to Step 1.
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Proof: Simply take £* = [[,cp (7 — ) and N*(x) = E*(x)p(x). This implies that the value of ¢ selected
for the solution is at most deg(E*) = e. |

Claim 15.2 If (N1, E1) and (N3, Es) are two valid outputs from Step 1, then Ni/Ey = Ny/Es.
Proof: We know that
Ni(z)Ez(z) = f(x)Er(z)E2(z) = Na(z)Er ()
for each = € Fy, so N1 Ey — NoEy has ¢ = n roots. Further, this polynomial has degree at most
(e+k—1)+e=2e+k—-1<n-1,

S0 it must in fact be the zero polynomial. |

15.2 List decoding

The motivation for list decoding is to “go beyond d/2 errors” and, for any potential message, to provide a
reasonably small set of possible codewords which might have produced it.
Definition 15.3 A code C C X" is (p, L)-list decodable if, for each y € ™,
| Ball(y, pn) NC| < L,
where Ball(y,r) := {w € " : A(y,w) < r}.

List decodable codes are useful if L < poly(n) and p > §/2, particularly if p — § — o(1). Next, we introduce
the Johnson bound, which “translates good distance to good list decodable radius.”

Theorem 15.4 (Johnson Bound) IfC C Y is an error-correcting code with relative distance 5(C) = 1—¢
(i.e. d=(1—¢)n), then C is a (1 — /e — o(1), poly(n))-list decodable code.

For the [n,k,d], Reed-Solomon code, with d = n — k + 1, this translates to a list decodable radius of
1—+/(k—=1)/n ~1—4/r. Information theoretic methods give a lower bound of 1 — r — o(1), but is an open
question whether this can be achieved. Before continuing with the proof of the Johnson bound, we observe
two notable drawbacks. First, it is a combinatorial bound that is not algorithmic, and, second, it is not
tight for all codes.

Proof: Fix y € Fy, and let ¢, ¢o, ..., ¢, be the codewords in Ball(y, pn). Consider the following graph,
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where ¢;, j is an edge if and only if (¢;); = y;. Observe that (i) the left degree of any ¢; is at least (1 — p)n
and that (ii) [N (c;) N N(c¢j)| < n —d, where N(v) denotes the neighborhood of vertex v.

Next, we’ll consider the expected number of common neighbors between random distinct codewords ¢;, ¢;.
Letting A denote the degree of right vertex k& and A denote the mean degree of a right vertex, we have

4 BN AN = S s n(Q)
n = C; Cj = 7 el L )
2 2
where the second inequality follows from the convexity of the function z (”20) By double counting, we also
know that A > (1 — p)L, so it follows that

(n—d)L(L —1) > nA(A—1)
— (n—d)(L-1)>(1-p)?Ln— (1 - p)n.

After a bit of algebra, we find that

Lgi
(I—p)2—¢

and choosing p =1 — /e — 1/ poly(n) gives the desired L < poly(n) bound. [
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