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13.1 Motivation and Definitions

Consider the following scenarios:

• Two players are communicating on a noisy channel in which a few of the bits of the message can be
altered. Can they still get reliable communication?

• Data is stored on a disk and a few locations in the memory can be altered. Can the disk be read
reliably?

A natural idea to deal with these scenarios would be to add redundancy to make sure that the message can be
recovered even when the symbols at a few locations are altered. An abstraction that captures this intuition is
that of error correcting codes. Before defining them, we first look at some preliminary definitions.

Definition 13.1 (Hamming distance). Let Σ be a finite alphabet. For two strings x and y of length n, we
define the Hamming distance between them as

∆ (x, y) =
∣∣{i : xi 6= yi}

∣∣ .
We denote by B (x, α) = {y : ∆ (x, y) ≤ α} the Hamming ball of radius α around x.

Intuitively, an error correcting code can be thought of as a mechanism that maps strings of a small length to
strings of longer length such that even when some of the locations in the coded message are tampered with,
we can recover the original message. We would also like efficient encoding and decoding algorithms for the
code, but in this lecture we will focus just on the set of codewords. This leads to the following definition.

Definition 13.2 (Error Correcting Codes). Let Σ be a finite alphabet. An error correcting code C is a subset
of Σn. The elements of C are known as the codewords. Associated with any such code are the following
parameters:

• Alphabet size q = |Σ|

• Block length n

• Dimension k = logq|C|

• Minimum distance d = min
x 6=y;x,y∈C

∆ (x, y)

• Rate r = k/n

• Relative distance δ = d/n

A code with block length n, dimension k and minimum distance d on an alphabet of size q is referred to as a
(n, k, d)q code.
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Next, we note the error correction and error detection properties of ECCs. First, note that if an error is such
that it does not change a codeword to another, we can detect that an error has occured. Thus, we can detect
upto d− 1 errors, since the minimum number of changes that need to be made to convert one codeword to

another is d. Next, note that for any x, y ∈ C, B

(
x,
⌊
d−1
2

⌋)
∩B

(
y,
⌊
d−1
2

⌋)
is empty. Thus, we can correct

upto
⌊
d−1
2

⌋
errors by outputing the closest codeword to the given string (though, it is not clear that this can

be done efficiently).

13.2 Tradeoff between Parameters

From the definitions, it is clear that we would like to construct codes with high rate and high relative distance.
In the following theorem, we note a tradeoff between these parameters.

Theorem 13.3 (Singleton Bound). Let C be a code with alphabet size q, block length n, dimension k and
distance d. Then,

k ≤ n− d+ 1.

Proof. We will show that |C| ≤ qn−d+1. Towards a contradiction, assume that |C| > qn−d+1. Since, there are
only qn−d+1 different words of length n − d + 1, there are two distinct codewords x, y that agree on their
initial n− d+ 1 block. Then,

∆ (x, y) ≤ n− (n− d+ 1) ≤ d− 1.

This contradicts the minimum distance of the code.

Restating this in terms of the rate and relative distance, we get

r ≤ 1− δ +
1

n
.

13.3 Linear Codes

Definition 13.4 (Linear Codes). A code C is said to be linear if the alphabet is a finite field Fq and C is
a subspace of Fn

q . In this case, the dimension of the code corresponds to the dimension of C as a subspace
of Fn

q . A linear code with block length n, dimension k and minimum distance d on an alphabet of size q is
referred to as a [n, k, d]q code.

Definition 13.5. Let C ⊆ Fn
q be a linear code of dimension k. A matrix G ∈ Fn×k

q is said to be generator
matrix if its columns span C. A matrix H is said to be a parity check matrix if H (C) = 0 i.e. C is the kernel
of H.

Definition 13.6. Let C ⊆ Fn
q be a linear code of dimension k. Then, the dual code C⊥ is a code with

dimension n− k defined as
C⊥ =

{
x : ∀y ∈ C, 〈x, y〉 = 0

}
,

where 〈·, ·〉 is the usual inner product given by 〈x, y〉 =
∑n

i=1 xiyi.

Note that since finite fields have finite characteristic, there are elements x ∈ Fn
q , such that 〈x, x〉 = 0. In

particular, the intersection of C and C⊥ can be non-empty.

Let G⊥ be the generator matrix of the dual code. Then, for all x ∈ C,
(
G⊥
)T
x = 0 since the rows of G⊥ are

orthogonal to x. Thus,
(
G⊥
)T

is a parity check matrix for C. Also, note that
(
C⊥
)⊥

= C. From this and
the previous fact it follows that GT is a parity check matrix for C⊥.

Next, we express the minimum distance of linear codes in an alternate way.
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Lemma 13.7. Let C be any linear code with minimum distance d, then

d = min
C3x6=0

‖x‖0 = min
C3x6=0

∣∣{i : xi 6= 0}
∣∣ .

Proof. Let x, y be the codewords that attain the minimum distance of the code. Then, note that since C is
a linear code, x − y ∈ C and ‖x− y‖0 = ∆ (x, y). Similarly, let z be a vector with the minimum non-zero
entries. Since C is a linear code 0 ∈ C. Thus, ∆ (z, 0) =‖z‖0 as required.

13.4 Examples of Codes

13.4.1 Hadamard Code

Definition 13.8 (Hadamard Code). Let m ∈ Z+. Then, the Hadamard code is the set of linear functions
from Fm

2 to F2 seen as vectors in F2m

2 . That is,

H (m) =
{(
〈x, y〉

)
y∈Fm

2

: x ∈ Fm
2

}
.

In words, a vector in the Hadamard code corresponds to the truth table of a linear function with each
coordinate corresponding to the evaluation of the function at a point in Fm

2 . The fact that the Hadamard
code is linear is clear from the definition. The generator matrix of the Hadamard code is given by

G =


y1,1 y1,2 y1,3 . . . y1,m
y2,1 y2,2 y2,3 . . . y2,m
y3,1 y3,2 y3,3 . . . y3,m
...

...
...

. . .
...

y2m,1 y2m,2 y2m,3 . . . y2m,m

,

where yi represents the i-th element in Fm
2 and yi,j represents the j-th location of the i-th string.

Lemma 13.9 (Parameters of the Hadamard Code). The Hadamard code H (m) is a
[
2m,m, 2m−1

]
2

code.

Proof. The dimension and block length follow from the definition. Next we show that for any non-zero linear
function f (x) =

∑m
i=1 xiyi has exactly 2m−1 zeros. This can be seen by noting that since the rank of f is 1,

the kernel of f has dimension m− 1 and that a m− 1-dimensional subspace over F2 has size 2m−1.

From this, we see that though the Hadamard code has exceptional relative distance of 1/2, it has a poor rate
of m2−m.

13.4.2 Reed–Solomon Code

Definition 13.10 (Reed-Solomon Code). Let Q ⊂ Fq and let r < |Q| = m. Then, Reed–Solomon code
RSq (r) is given by evaluations of Fq polynomials of degree at most r on Q. That is

RSq (r) =
{(
f (y)

)
y∈Q : f ∈ Fq [x] with deg(f) ≤ r

}
.

Since the sums and scalar multiples of polynomials of degree at most r is also a polynomial of degree r, we
have that the Reed–Solomon codes are linear. The generator matrix of the Reed–Solomon code is given by
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the Vandermonde matrix defined by Q. That is,

G =


1 α1 α2

1 . . . αr
1

1 α2 α2
2 . . . αr

2

1 α3 α2
3 . . . αr

3
...

...
...

. . .
...

1 αm α2
m . . . αr

m

,

where Q = {α1 . . . αm}.

Lemma 13.11 (Parameters of the Reed–Solomon Code). The Reed–Solomon code RSq (r) is a [m, r + 1,m− r]q
code.

Proof. Since a non-zero polynomial of degree at most r, can have at most r zeroes, two distinct polynomials
cannot agree on all points of Q. Thus, the dimension of the Reed–Solomon code is r + 1. Furthermore, each
such non-zero vector can have at most r zeroes. Thus, the minimum distance is m− r.

Note that the Reed–Solomon code meets the singleton bound and in that sense they are optimal. But, one
disadvantage is that the block length of the code can be at most the alphabet size which we would usually
like to keep small. In the next lecture, we will see the Reed–Muller codes which naturally generalize both
these codes.
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