CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 11: October 3
Lecturer: Eshan Chattopadhyay Scribe: Sloan Nietert

11.1 Overview

This lecture will cover the following topics:

e Probabilistic existence of seeded extractors
e Simulation of randomized algorithms using defective sources
e Universal hash functions (with explicit construction)

e Construct seeded extractors from hash functions

11.2 Existence of seeded extractors

Recall that we defined a seeded extractor to be a set of functions
{Ext; : {0,1}" — {0,1}™}, (0,13

such that |[Exty,(X) — U,,| < € for any (n, k)-source X.

Alternatively, we can view an extractor as a single function.

Definition 11.1 We say that
Ext : {0,1}" x {0,1}¢ — {0,1}™

is a (k,e)-extractor if |Ext(X,Uq) — Up| < € for any (n, k)-source X.
Sometimes, we will need an even stronger notion.

Definition 11.2 We say that
Ext : {0,1}" x {0,1}% — {0, 1}™

is a strong-seeded extractor if | Ext(X,Uy),Uq — Uy, Uqgl| < €.

This is equivalent to requiring that

E |Ext(X,y) — Un| <e.
y~Uq

In what follows, we will use the notation D; =, Ds to mean that |D; — Ds| < e. Next, we show the existence
of seeded extractors.

11-1



11-2 Lecture 11: October 3

Proof:

Let Ext : {0,1}" x {0,1}¢ — {0,1}™ be a random function, and let X be a flat (n,k)-source. Take
T C {0,1}™ to be a “test” subset for our extractor. The main idea of what follows is to take a union
bound over all tests and flat sources. Note that all uppercase letters represent the base 2 exponential of their
lowercase counterparts.

For any z € {0,1}" and y € {0,1}4, let

1, if Ext(z,y) €T
Ty — 0

0.W.
Next, define
1
Wr= Pr [Ext(z,y) €T]=—= > Zyy

z~ X, y~Uqg KD
w€supp(X),y€{0,1}¢

Clearly, E[Wr] = |T'|/M. Noting that the Z, , variables are i.i.d. and uniform, we can use Chernoff’s bound
to find

Pr[[Wr — E(Wr)| > €] < exp(—Q(*KD)).

Thus, we can bound the probability of Ext performing poorly on any test set or flat source by

oM (z) exp(—Q(e*K D)).

We choose m =k + d — 2log(1/e) — O(1) and bound (%) by (Ne/K)¥ to see that
d > log(n — k) + 2log(1/e) + O(1)

suffices to bring the error probability below 1 and guarantee the existence we desire. |

11.3 Simulation of randomized algorithms

Suppose A is a randomized algorithm such that A(-, U,,) is incorrect with probability at most &, and suppose
we have access to an (n, k)-source X with k& > m.

If Ext is a (k, §)-extractor, we can define a new algorithm
"4/<'7 X) = majye{o,l}d{A('a EXt(X7 y))}

Clearly, the time blow up is a factor of D.
Claim 11.3 A’ has error at most 2(e + ¢).

Proof: We now introduce a graph interpretation of the seeded extractor Ext : {0,1}™ x {0,1}" — {0,1}™,



Lecture 11: October 3 11-3

[M] = {0,1}™M

[N] = {0,1}"

where the above represents a D left-regular bipartite graph with x and z joined if and only if there exists
y € {0,1}4 such that Ext(x,y) = z.

Define the set Bad = {z € {0,1}"™ : A(-, 2) is wrong}. Clearly, |Bad| < eM. Next, define
Badx = {z € supp(X) : |I'(z) N Bad| > D/2},

so that A’(-,x) is wrong if and only if £ € Bady. Then, because Ext is an extractor, we have that
|IBad|/M < e, and if 2 € Badx, then

Pr[Ext(z,Uy) € Bad] >

DN | =

Putting everything together, we have

PI;([JU € Badx] < 2P1"[EX‘5(X7 Ug) € Bad} <2 (

Thus, the error of A’ is bounded by 2(¢ + 0), as desired. [

11.4 Universal hash functions

Definition 11.4 We say that H = {hi }icr, hi : [N] = [M], is a universal hash function if for allx # y € [N]

1
= < e
Pr [h(e) = h(y)] < -
Let F, be a finite field with ¢ = 2", and define
he:x—a-z (mod2™)

for each a € F,.
Claim 11.5 H = {ha}aeF, is a universal hash function.

Proof: Take x,y distinct in Fy. Then,
[h(z) = h(y)] = I;E l[az = ay (mod 2™)] = Pr [az=0 (mod 2™)] =1/M,

Pr
heH a€cF,

where z =2z —y # 0. ]



11-4 Lecture 11: October 3

11.5 Constructing extractors from hash functions

Definition 11.6 We define the collision probability
cp(D) = Pr[D = D],

where D and D' are independent copies of D.

Observe that

cp(D) =Y D(x)>.

zeQ

Lemma 11.7 If D is a distribution on {0,1}" with cp(D) < 1E2, then
|D - Un| < \/<g

Proof: We have
2|D - Un| = ||D - Un”l < ‘/ﬁHD - UnH2

by Cauchy-Schwartz, and

1 1 1
D=3 = 3 (D) -U@?= Y DaP-2 Y D)y +5zN=enlD) -
z€{0,1}n z€{0,1}n z€{0,1}n
from which the desired inequality follows. [ |

(to be continued in next lecture)



	Overview
	Existence of seeded extractors
	Simulation of randomized algorithms
	Universal hash functions
	Constructing extractors from hash functions

