
Easy Witnesses and Hard Circuit Lower Bounds

Shawn Ong

December 7, 2018

1 Introduction and Definitions

One major research area of modern complexity theory is derandomization, that is, determining
whether probabilistic algorithms can be simulated by deterministic ones without significantly
increasing computational bounds on running time or space efficiency. In particular, though it is
suspected that BPP = P, it is still not even known whether BPP 6= NEXP. The primary result
of [4] is a proof that NEXP ⊂ P/poly if and only if NEXP = MA; unless stated otherwise, any
information referenced below comes from [4].

Another major result of the paper is a set of various downward closure results. Many complexity
theory results are easily seen to “translate upwards” – for example, if NP = P, then it can be
shown that NEXP = EXP. Such proofs often utilize a padding argument; suppose, for example,
that L ∈ NEXP, that is, there is a nondeterministic algorithm deciding L which runs in 2n

O(1)

time. We can construct a padded version of L by extending each string of length n to one of
length 2n, by appending 02n−n. There exists a nondeterministic poly-time algorithm to decide
this language; namely, check whether the input is of this form, and if so, run the algorithm to
decide L on the appropriate prefix of the input. Then, under the assumption that NP = P, there
exists a deterministic poly-time algorithm for the padded language, which can be converted into
a deterministic exponential-time algorithm for L, by converting the input to the padded form
and running the deterministic algorithm for the padded language.

The paper demonstrates that, for certain classes, proving a relationship between two classes can
also translate downwards. In particular, it provides evidence that proving EXP 6= BPP is hard,
as this is true iff EE 6= BPE (the second claim implies the first by a padding argument; the paper
demonstrates that the reverse direction holds as well).

We provide definitions for some of the machinery which will be relevant in the remainder of the
paper. We will assume familiarity with the standard complexity classes P, NP, BPP, ZPP, RP,
E, EXP, NE, NEXP, as well as SPACE(s), DTIME(s), and NTIME(s) where s is any function
N → R. Given a Turing machine M , or equivalently, any decision procedure, we define L(M)
to be the corresponding language. For any language L, define the characteristic function χL :
{0, 1}∗ → {0, 1} such that χL(x) = 1 iff x ∈ L. In addition, we will define some additional
complexity classes:
Definition 1.1. Let the class MA consist of all languages L ⊆ {0, 1}∗ such that there exists
a polynomial-time decidable predicate R(x, y, z) (i.e. a function from binary strings x, y, z 7→

1

{0, 1}) and a constant c such that, for every x ∈ {0, 1}n, we have:

x ∈ L =⇒ ∃y ∈ {0, 1}nc such that Pr
z∈{0,1}nc

[R(x, y, z) = 1] ≥ 2

3

x /∈ L =⇒ ∀y ∈ {0, 1}nc such that Pr
z∈{0,1}nc

[R(x, y, z) = 1] ≤ 1

3

Intuitively, this is a “nondeterministic version of BPP” [4]; in addition to the input x, we
are allowed to nondeterministically receive advice y which gives a high probability (over z) of
acceptance for x ∈ L; if x /∈ L, then there is a low probability of acceptance for any possible
advice.
Definition 1.2. Let the class AM consist of all languages L ⊆ {0, 1}∗ such that there exists
a polynomial-time decidable predicate R(x, y, z) (i.e. a function from binary strings x, y, z 7→
{0, 1}) and a constant c such that, for every x ∈ {0, 1}n, we have:

x ∈ L =⇒ Pr
z∈{0,1}nc

[∃y ∈ {0, 1}nc such that R(x, y, z) = 1] ≥ 2

3

x /∈ L =⇒ Pr
z∈{0,1}nc

[∃y ∈ {0, 1}nc such that R(x, y, z) = 1] ≤ 1

3

In contrast to MA, AM can be viewed as a “probabilistic version of NP” [4]. Given input x ∈ L,
there exists with high probability a witness of R holding; on the other hand, for x /∈ L, the
probability of such a witness existing is low.
Definition 1.3. For any function s : N → N, define the nonuniform complexity class SIZE(s)
to consist of all families {fn}n≥0, of n-variable boolean functions such that, for sufficiently large
n, fn can be computed by a Boolean circuit of size s(n). We will similarly define SIZEA(s) to
contain the families of n-variable Boolean functions computable by oracle circuits of size s(n)
with A-gates, where A is an arbitrary oracle.
Definition 1.4. Let C be any complexity class over Σ and let t : N → N. We define C/t to
consist of all languages L for which there exists a language M ∈ C and family of strings {yn}n≥0,
where yn ∈ ΣO(t(n)), such that for all x ∈ Σn, we have:

x ∈ L ⇐⇒ (x, yn) ∈M

Intuitively, C/t consists of all languages which can be decided by a Turing machine of complexity
C, using advice of size up to t.
Definition 1.5. For any complexity class C over alphabet Σ, define:

io-C := {L ⊆ Σ∗ | ∃M ∈ C, L ∩ Σn = M ∩ σn infinitely often}

One key idea is the “easy witness” method, originally due to Kabanets [7], in which a user
searches for an object satisfying specific properties (such as a witness in a search problem)
among objects which have concise descriptions (say, logarithmic in the input size). Since there
are few such objects, this search is more efficient than a standard brute-force. If the search fails,
then the result is a “hardness test,” that is, an efficient algorithm to generate strings that do not
have small descriptions (as such a string would have been identified by the brute force search).
The hardness test allows for nondeterministic generation of the truth table of a hard Boolean
function, to which known hardness-randomness tradeoffs can be applied, allowing the table to
be used as a source of pseudorandomness.

2

In [4], the easy witness method is used to reduce the search space for a witness of an NEXP
problem, by considering the NEXP-complete problem Succinct-SAT. Succinct-SAT is the prob-
lem of deciding whether a propositional formula is satisfiable, given a Boolean circuit encoding
the formula. Intuitively, the easy witness reduction in this problem shows that any satisfiable
propositional formula described by a small Boolean circuit has a satisfying assignment (the easy
witness) that can be described by a small Boolean circuit (where “small” is defined by a bound
on circuit complexity).

The following definitions will prove useful to formally express the notion of easy witnesses:
Definition 1.6. Let R(x, y), x ∈ {0, 1}∗, y ∈ {0, 1}∗ be a poly-time decidable relation and let
l : N→ N. Define fR(x) : {0, 1}∗ → {0, 1} by:

fR(x) = 1 iff ∃y ∈ {0, 1}l(|x|) such that R(x, y) holds.

This turns the search problem of finding a witness y for an input x so that R(x, y) holds into
a decision problem. For the purposes of [4], take l(n) = 2n, so that fR(x) is the characteristic
function of a language in NE.
Definition 1.7. Let TA,s(n) be the set of truth tables of n-variable Boolean functions described

by A-oracle circuits of size s(n). Define: f̂R,A,s(x) : {0, 1}∗ → {0, 1}

f̂R,A,s(x) = 1 iff ∃y ∈ TA,s(|x|) such that R(x, y) holds.

This defines a function indicating the inputs x for which easy witnesses y exist for R(x, y). From
these definitions, we have fR = f̂R,A,s iff every x which allows a satisfying assignment for R has
such an assignment with an easy witness.

Additionally, for any fixed oracle A ∈ EXP and for any function s : N→ N, the set TA,s(n) can
be enumerated in deterministic 2poly(s(n)) time. A circuit of size s(n) can query an oracle A on

at most 2s(n) and A can be simulated by a deterministic Turing Machine in 2n
d

time for some
d ∈ N. So the truth table of the Boolean function corresponding to the circuit can be found in
2npoly(s(n))2poly(s(n)), and there are only 2O(s log s) possible A-oracle circuits of size s.

In particular, f̂R,A,s can be deterministically computed in 2poly(s(n)) time, which is strictly better

than the brute force 2O(n)22n runtime to compute fR. Therefore, if fR = f̂R,A,s, a nontrivial

deterministic algorithm for fR exists. On the other hand, we will see that if fR 6= f̂R,A,s, this
yields a nondeterministic poly(2n)-time algorithm generating truth tables of n-variable Boolean
functions of high A-oracle circuit complexity.

We will also reproduce the relevant definitions for pseudorandom generators. A generator is
simply a function G : {0, 1}∗ → {0, 1}∗ mapping {0, 1}l(n) → {0, 1}n, where l : N→ N.
Definition 1.8. For oracle A, a generator G : {0, 1}l(n) → {0, 1}n is SIZEA(n)-pseudorandom
if, given any n-input Boolean circuit C of size n with A-oracle gates:

| Pr
x∈{0,1}l(n)

[C(G(x)) = 1]− Pr
y∈{0,1}n

[C(y) = 1]| ≤ 1

n

Informally, such a function is “good enough” to fool any such circuit within reasonable prob-
ability; this allows for simulating randomness using a small seed (of size l(n)), which may be
iterated over by brute force without significantly increasing runtime, for sufficiently small l(n).
Additionally, call a generator quick if it can be deterministically computed in time 2O(l(n)).

3

2 Main Results

The main proof uses a number of separation results, the first of which is as follows:
Theorem 2.1. For any constant c ∈ N, EXP 6⊂ io-SIZE(nc).

The argument here is by diagonalization. For sufficiently large n, there is an n-variable Boolean
function of circuit complexity 2nc with no equivalent circuit of size nc. Then brute force search
over circuits of size 2nc to find the first such circuit, in lexicographic order, can be done in
deterministic exponential time. The language formed by taking all strings corresponding to
these functions over all n is then in EXP but not io-SIZE(nc).
Theorem 2.2. For any fixed c ∈ N, EXP 6⊆ io-[DTIME(2n

c
)/nc].

Let n ∈ N be sufficiently large (so that 2n ≤ nc) and let Sn be all truth tables generated by a
n-variable Boolean function decided by a deterministic Turing machine of description of size n
running in 2n

c
time, using advice of length at most nc. In particular, |Sn| ≤ 22nc . Construct a

truth table t = t1, . . . , t2n of an n-variable Boolean function inductively, such that tk disagrees
with the majority of elements of Sn which agree with t1, . . . , tk−1; take all remaining bits of t to
be 0. Let L be the language such that for x ∈ {0, 1}n, x ∈ L iff tx = 1. L ∈ EXP by construction,
but L /∈ io-[DTIME(2n

c
)/nc], as no Boolean function can agree with L if Skn is empty.

The proof also relies on lemmas based on the existence of universal Turing machines, that is,
Turing machines that can simulate any Turing machine on any given input.
Lemma 2.3. If NEXP ⊂ P/poly, then NTIME(2n)/n ⊂ SIZE(poly(n)).

For any L ∈ NTIME(2n)/n there exists M ∈ NTIME(2n) and a sequence of advice strings
{yn}n≥0, yn ∈ {0, 1}n such that for all x ∈ {0, 1}n, x ∈ L iff (x, yn) ∈ M . Construct a
nondeterministic Turing machine U which, on input (i, x) of size n, with i ∈ N and x ∈ {0, 1}∗,
simulates the ith nondeterministic TM Mi on x, accepting iff Mi accepts within 22n steps. Since
L(U) ∈ NEXP, it can be decided by Boolean circuits of size nk, where k ∈ N is fixed; then any
language M ∈ NTIME(2n) can be decided by Boolean circuits of size (c+ n)k = O(nk), where c
is the length of the description of a nondeterministic 2n-time Turing Machine for M . Then any
L ∈ NTIME(2n)/n can be decided by Boolean circuits of size O(nk), as desired.
Lemma 2.4. If NEXP = EXP, then there is a constant d0 ∈ N such that NTIME(2n)/n ⊆
DTIME(2n

d0)/n.

Like above, for any L ∈ NTIME(2n)/n, there exists a nondeterministic 2n-time deterministic
Turing machine M and n-bit advice strings {an}n≥0 such that x ∈ L iff M accepts (x, an).
Corollary 2.5. If NEXP ⊂ P/poly then EXP 6⊆ io-[NTIME(2n)/n]. Similarly, if NEXP = EXP
then NEXP 6⊆ io-[NTIME(2n)/n].

If NEXP ⊂ P/poly, then by Lemma 2.3, there exists d0 ∈ N such that NTIME(2n)/n ⊂ SIZE(nd0);
this contradicts Theorem 2.1, as EXP ⊆ NTIME(2n)/n. The second result follows similarly by
applying Lemma 2.4 and Theorem 2.2 analogously.

Note that [4] also proves a similar result, that if NEE = EE, then NEE 6⊆ io-[NTIME(22n)/n], in
much the same manner.

The proof also makes use of results relating to derandomization.
Theorem 2.6. There exists polynomial-time computable F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such
that, for any oracle A and any ε > 0, there exist δ < ε and d ∈ N such that:

F : {0, 1}2n
d

× {0, 1}nε → {0, 1}n.

4

If r is the truth table of a nδ-variable Boolean function of A-circuit complexity at least nδd, then
Gr(s) := F (r, s) is a SIZEA(n)-pseudorandom generator from {0, 1}nε → {0, 1}n. [9]

In other words, hard Boolean functions (those with high circuit complexity) can be used to
construct quick pseudorandom generators. Yao [13] and Nisan and Wigderson [10] showed that
quick such SIZE(n)-pseudorandom generators allow for any BPP algorithm to be simulated in

deterministic 2n
kε

time for constant k ∈ N. Goldreich and Zuckerman [3] similarly show that

such a pseudorandom generator allows a nondeterministic 2n
kε

-time decision procedure for any
MA language.

The following result is due to [5] and [9].
Theorem 2.7. There exists polynomial-time computable F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such
that, for any oracle A and any ε > 0, there exist c, d ∈ N such that:

F : {0, 1}nc × {0, 1}d logn → {0, 1}n.

If r is the truth table of a c log n-variable Boolean function of A-circuit complexity at least nεc,
then Gr(s) := F (r, s) is a SIZEA(n)-pseudorandom generator. from {0, 1}d logn → {0, 1}n.

This provides another hardness-randomness tradeoff, namely, if there exists a deterministic
poly(2n)-time algorithm to generate truth tables of n-variable Boolean functions of circuit com-
plexity at least 2Ω(n), then BPP = P; if such an algorithm is zero-error probabilistic, then
BPP = ZPP.
Lemma 2.8. Let R(x, y) be a polynomial-time decidable relation on {0, 1}n×{0, 1}2n, A ∈ EXP,
and s : N → N. If fR 6= f̂R,A,s, then there exists a nondeterministic poly(2n)-time algorithm B
and family of n-bit strings {xn}n≥0 such that for infinitely many values of n ∈ N, B on advice
xn+1 nondeterministically generates the truth table of an n-variable Boolean function which has
A-oracle circuit complexity greater than s(n).

This result formalizes the notion of a lack of easy witnesses inducing a hardness test. Intuitively,
define xn+1 = 1zn for fR(zn) = 1 and f̂R,A,s(zn) = 0 (this must happen infinitely often) or
xn+1 = 0n+1 if no such zn exists. The algorithm B then proceeds as follows: given advice
1z ∈ {0, 1}n+1, nondeterministically find y ∈ {0, 1}2n such that R(x, y) holds, output y and halt
in the accepting state. Otherwise, given advice 0n+1, output 02n and halt in the accepting state.
All nonzero truth tables will be those of functions with A-oracle circuit complexity greater than
s(n).

This result, combined with the prior results on pseudorandom generators and circuit complexity,
implies that if fR 6= f̂R,A,s for A ∈ EXP and s ∈ nΩ(1), then some particular probabilistic
algorithms may be derandomized.
Theorem 2.9. If NEXP 6= EXP, then for every ε > 0, AM ⊆ io-[NTIME(2n

ε
)/nε].

If every poly-time decidable relation R(x, y) on {0, 1}n × {0, 1}2n has a d ∈ N such that fR =
f̂R,SAT,nd , then NEXP ⊆ EXP (this follows from a padding argument). As such, if NEXP 6= EXP,

there is some such R and s : N→ N such that fR 6= f̂R,A,s. Then Lemma 2.8 gives the existence
of an algorithm which nondeterministically generates truth tables of Boolean functions fn such
that for every d ∈ N, fn has SAT-oracle complexity greater than nd for infinitely many n.

But [9] showed that the existence of such functions fn implies that, for every ε > 0, AM ⊆
io-[NTIME(2n

ε
)/a(nε)].

The primary result of [4] is as follows:
Theorem 2.10. NEXP ⊂ P/poly ⇐⇒ NEXP = MA.

5

Babai, Fortnow, and Lund [1] proved the following, weaker result, which will be useful for the
main proof:
Theorem 2.11. EXP ⊂ P/poly =⇒ EXP = MA.

The first direction of the proof is due to Dieter van Melkebeek, in private correspondence:
Theorem 2.12. If NEXP = MA, then NEXP ⊂ P/poly.

If the assumption holds, then NEXP = EXP, so EXP 6⊂ P/poly. But this means that there
exists a hard Boolean function; from Theorem 2.6, we have MA ⊆ io-NTIME(2n), contradicting
Corollary 2.5.
Theorem 2.13. If NEXP ⊂ P/poly, then NEXP = EXP.

Assume towards contradiction that NEXP ⊂ P/poly but NEXP 6⊆ EXP. By Theorem 2.11,
the first assumption implies that NEXP = EXP; in particular, EXP = AM = MA (both are
contained in NEXP). Then from Theorem 2.9, for every ε > 0, EXP = AM ⊆ io-[NTIME(2n

ε
)/nε],

contradicting Corollary 2.5.

From Theorem 2.11, if NEXP ⊂ P/poly and NEXP = EXP, then NEXP = MA. This, along with
the previous two theorems immediately yields a proof for Theorem 2.10.

3 Applications

We highlight a few of the applications of Theorem 2.10.

3.1 Natural Properties

Previous proofs for circuit lower bounds for nonmonotone Boolean functions followed the same
two-part structure [11]: First, a “natural” property of Boolean functions is defined such that
any family of Boolean functions satisfying the property has high circuit complexity. Then an
explicit family of Boolean functions satisfying the natural property is demonstrated.

Formally, for a class of languages L, a family F = {Fn}n>0 of n-variable Boolean functions is
L-natural if it has the conditions:

1. Constructiveness: the language T consisting of truth tables of Boolean functions in F
is in L.

2. Largeness: There exists c ∈ N such that for every N = 2n, we have |TN | ≥ 2N/N c where
TN is the elements of T which have length N .

A property F is useful against P/poly if for every family of Boolean functions f = {fn}n≥0, if
fn ∈ Fn for infinitely many n, then f /∈ P/poly.
Theorem 3.1. If there exists an NP-natural property that is useful against P/poly then NEXP 6⊂
P/poly.

If such a property exists, we may nondeterministically guess Boolean functions of superpolyno-
mial circuit complexity in time polynomial in the size of their truth tables. In particular, these
can be used to derandomize MA, as described by Theorem 2.6. This gives NEXP 6= MA, to
which we may apply Theorem 2.10.

6

3.2 Circuit Approximation

Recall the Circuit Acceptance Probability Problem (CAPP), that is, the problem of determining
the fraction of inputs accepted by a Boolean circuit. This problem is solvable in probabilistic
polynomial-time, and is complete for promise− BPP [8]. We say that CAPP can be nontrivally
approximated if for every ε > 0, there is a nondeterministic 2n

ε
-time algorithm using advice

of size nε approximating the acceptance probability of any Boolean circuit of size n, within
additive error 1

6 , for infinitely many n ∈ N. Such an M algorithm is black-box if it only has
oracle access to the function computed by the circuit. Finally, such an algorithm is non-adaptive
if the queries asked by M depends only on n and are computed before obtaining the result of
any other query.
Theorem 3.2. The following are equivalent:

1. NEXP 6⊂ P/poly.

2. CAPP can be nontrivially approximated.

3. CAPP can be nontrivially approximated by a black-box non-adaptive algorithm.

The implication (3) =⇒ (2) is trivial. Suppose that (2) holds. If CAPP can be nontrivially
approximated, then for any ε > 0, we have MA ⊆ io-[NTIME(2n

ε
)/nε]. Then corollary 2.5 gives

NEXP 6= MA; applying Theorem 2.10 yields NEXP 6⊂ P/poly. Finally, if NEXP 6⊂ P/poly, then
there is some poly(2n)-time Turing Machine using advice of size n which nondeterministically
generates truth tables of functions having n-variable circuit complexity of arbitrarily high com-
plexity (at least nd, where d ∈ N), for infinitely many n. Then Theorem 2.6 gives nontrivial
approximation.

3.3 Downward Closures and Gap Theorems

Theorem 2.10 also leads to a number of downward closure results, i.e. results showing that a
collapse of higher complexity classes forces a collapse of lower complexity class. Such results are
rare; in contrast, padding arguments can be used to derive a number of results in the opposite
direction. Though these downward closures were proven by Fortnow in [2], the techniques used
in [4] also induce gap theorems which were not available using these methods.

The downward closure results will rely upon the following characterization of probability distri-
butions computable by polynomial-time Turing machines. A family of probability distributions
µ = {µn}n≥0 is P-sampleable if there is a polynomial p(n) and poly-time Turing machine M
such that, if r ∈ {0, 1}p(n) is chosen uniformly at random, the output if M(n, r) is an n-bit string
distributed according to µn.
Lemma 3.3. Suppose that for every L ∈ BPP, every ε > 0, and every P-sampleable distribution
family µ, there exists a deterministic 2n

ε
-time algorithm A such that Prx∼µn [A(x) 6= χL(x)] <

1/n for infinitely many n ∈ N. Then for every ε > 0, BPE ⊆ io-[DTIME(22εn)/n].

Let ε > 0; for any L ∈ BPE, associate the padded language Lpad ∈ BPP, where for each x ∈ L
with |x| = n, Lpad contains padded versions of x of every length [2n..2n+1]. For any n ∈ N
and 0 ≤ i < 2n, there are 2n strings which could be padded elements of L; but these have
length all at least m = 2n + i. The uniform distribution over such strings assigns each such
string probability at least 1

m ; then this distribution is P-sampleable, as we can define M(m, r)
to output r0m−n.

7

Then by assumption, there is a 2n
ε
-time algorithm A such that Prx∼µn [A(x) 6= χL(x)] < 1/n

for infinitely many n ∈ N. Then, for infinitely many n ∈ N, there exists 0 ≤ i < 2n such that
A must be correct on every string of the form x02n−n+i, because each string has probability
at least 1

m . We can take the n-bit encodings of i as advice for a deterministic algorithm using
linear advice running in O(22εn) time, deciding L infinitely often.

It may not be obvious how this result may be useful; the following theorem due to Impagliazzo
and Wigderson [6] can be used in conjunction with Lemma 3.3.
Theorem 3.4. Suppose that EXP 6= BPP. Then for every L ∈ BPP and every ε > 0, there
is a deterministic 2n

ε
-time algorithm A such that, for every P-sampleable distribution family µ,

there are infinitely many n ∈ N such that Prx∼µn [A(x) 6= χL(x)] < 1/n.

These results now allow us to prove the following:
Theorem 3.5. If EXP 6= BPP, then for every ε > 0, BPE ⊆ io-[DTIME(22εn)/n].

If EXP 6= BPP, then Theorem 3.4 yields the premise of Lemma 3.3, which proves the claim.

We now prove the first downward closure result. Note that a padding argument suffices for the
reverse direction.
Theorem 3.6. EE = BPE =⇒ EXP = BPP.

If BPE = EE but BPP 6= EXP, then Theorem 3.5 gives BPE ⊆ io-[DTIME(22n)/n]. It follows that
EE ⊆ io-[DTIME(22n)/n], which can be shown to be false by a diagonalization argument.

Note also that Theorem 3.5 gives the following gap theorem:
Theorem 3.7. Either BPP = EE or, for every ε > 0, BPE ⊆ io-[DTIME(22εn)/n]

As mentioned in the proof for Theorem 3.6, it is impossible for both to hold. If EE 6= BPE, then
EXP 6= BPP by padding, and Theorem 3.5 completes the proof.

Similar downward closure results and gap theorem are proved for randomized language classes
in [4], where EXP = ZPP ⇐⇒ EE = ZPE and EXP = RP ⇐⇒ EE = RE; the authors also
provide a similar gap theorem for ZPE, namely:
Theorem 3.8. ZPP 6= EE iff for every ε > 0, ZPE ⊆ io-DTIME(22εn).

Additionally, [4] also proves a gap theorem for MA.
Theorem 3.9. MA 6= NEXP iff for every ε > 0,MA ⊆ io-[NTIME(2n

ε
)/nε].

If MA 6= NEXP then Theorem 2.10 gives NEXP 6⊂ P/poly. Then there is a poly(2n)-time Turing
machine which uses advice n to nondeterministically generate a truth table of n-variable Boolean
function fn of superpolynomial circuit complexity. This follows by construction; the algorithm
can nondeterministically guess strings with certificates of exponential length, and verify that
fn accepts in polynomial time; then output the characteristic function of fn. But applying 2.6
yields that for any ε > 0, MA ⊆ io-[NTIME(2n

ε
)/nε]. In the other direction, if MA = NEXP and

MA ⊆ io-[NTIME(2n)/n], Corollary 2.5 yields a contradiction.

3.4 NEXP- Search Problems

Though the main result is not directly used, the same reasoning can be applied to show that if
NEXP = AM, then every NEXP search problem can be solved in deterministic 2poly(n) time.
Theorem 3.10. If NEXP = AM, then for every language L ∈ NEXP, there exists d ∈ N such
that, for n sufficiently large, every n-bit string x ∈ L has at least one witness y ∈ {0, 1}2poly(n)

which can be described by a SAT-oracle circuit of size at most nd.

8

Assume towards contradiction that NEXP = AM but the conclusion does not hold. If, for
every poly-time decidable relation R(x, y) on {0, 1}n × {0, 1}2n , there exists a d ∈ N such that
fR = f̂R,SAT,nd , then the conclusion holds (by padding). So suppose some such R exist where,

for every d ∈ N, we have fR 6= f̂R,SAT,nd . Then Lemma 2.8 shows that there is an algorithm to
nondeterministically generate truth tables of n-variable Boolean functions of SAT-oracle circuit
complexity greater than nd. The same result as used in the proof of Theorem 2.9 then gives
AM ⊆ io-[NTIME(2n

ε
)/nε] for any ε > 0. Under the assumption that NEXP = EXP = AM, this

contradicts Corollary 2.5.

Under the assumption that NEXP = AM, Theorem 3.10 demonstrates that witnesses for any L ∈
NEXP can be found by enumerating all SAT-oracle circuits of fixed polynomial-size and checking
to see if any encodes a witness; this procedure can be done deterministically in exponential
time.

4 Conclusion

The primary result that NEXP ⊂ P/poly ⇐⇒ NEXP = MA is significant in that it demon-
strates that any derandomization of MA is equivalent to proving a nontrivial circuit bound on
NEXP. Work in the field of derandomization with regards to complexity classes has continued
since. More recently, Ryan Williams [12] shows that NTIME(2n) does not have non-uniform ACC
circuits of polynomial size (ACC consists of circuits using unbounded fan-in AND, OR, NOT ,
and MODm gates with constant depth), using fast satisfiability problems and the nondetermin-
istic time hierarchy theorem. While this unconditional derandomization result helps resolve a
major open problem in computational complexity, it remains to be seen whether MA can be
derandomized, and if so, whether there is a standard procedure for doing so.

9

References

[1] L.Babai, L. Fortnow, and C. Lund. Non-deterministic Exponential time has two-prover in-
teractive protocols. Computational Complexity, 1:3–40, 1991.

[2] L. Fortnow. Comparing notions of full derandomization. In Proceedings of the Sixteenth
Annual IEEE Conference on Computational Complexity, p. 28–34, 2001.

[3] O. Goldreich and D. Zuckerman. Another proof that BPP⊆PH (and more). Electronic Col-
loquium on Computational Complexity, TR97-045, 1997.

[4] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: exponential
time vs. probabilistic polynomial time. Journal of Computer and System Sciences, 65(4):672–
694, 2002.

[5] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizing
the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory
of Computing, p. 220–229, 1997.

[6] R. Impagliazzo and A. Wigderson. Randomness vs. time: De-randomization under a uniform
assumption. In Proceedings of the Thirty-Ninth Annual IEEE Symposium on Foundations of
Computer Science, p. 734–743, 1998.

[7] V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. Journal
of Computer and System Sciences, 63(2):236–252, 2001. (preliminary version in CCC’00).

[8] V. Kabanets, C. Rackoff, and S. Cook. Efficiently approximable real-valued functions. Elec-
tronic Colloquium on Computational Complexity, TR00–034, 2000.

[9] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial hierarchy collapses. In Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing, p. 659–667, 1999.

[10] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and System
Sciences, 49:149–167, 1994.

[11] A.A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences,
55:24–35, 1997.

[12] R. Williams. Nonuniform ACC Circuit Lower Bounds. Journal of the ACM, 61:(1):2–32,
2014.

[13] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Foundations of Computer Science, p. 80–91, 1982.

10

	Introduction and Definitions
	Main Results
	Applications
	Natural Properties
	Circuit Approximation
	Downward Closures and Gap Theorems
	NEXP- Search Problems

	Conclusion

