
CAYLEY EXPANDERS AND THE ZIGZAG PRODUCT

TJADEN HESS, LINUS SETIABRATA, COSMO VIOLA

1. Introduction

An expander graph is a regular graph of low degree such that the graph is well-connected in
some sense. For a d-regular graph G, define λ(G) as the second largest eigenvalue of the nor-
malized adjacency matrix of G. An infinite family of graphs Gn is called a spectral expander
family if λ(Gn) ≤ c for some constant c < 1. For brevity of notation, we say that a d-regular
graph G on n vertices is an (n, d, t)-graph if λ ≤ t.

The construction of explicit infinite families of expander graphs is of significant interest, as
such constructions give rise to pseudorandom generators, codes, and other useful objects[1],
[2]. A breakthrough in 2002 by Reingold, Vadhan, and Wigderson demonstrated a powerful
new technique for constructing such families inductively via a novel combinatorial product, the
zigzag product, with the property that, if G is a (n1, d1, t1)-graph and H is a (d1, d2, t2)-graph,
then the zigzag product H z G is a (n1d1, d

2
2, t1 + t2)-graph [3].

While the zigzag product gives a combinatorial construction for expanders, there is interest
in generating expander graphs with more algebraic structure; we would like to exhibit families
of expanders which are Cayley graphs of some infinite family of groups. To this end, Alon,
Lubotzky, and Wigderson demonstrated that the standard semidirect product on groups can,
under suitable choices of generators, give a zigzag product on the Cayley graphs of the groups
[4]. However, at the time there was no known explicit construction of Cayley expander graphs
suitable to act as the seed for this inductive construction. More recently, Kassabov [5] gave
generating sets of Sn and An of bounded size, from which Rozenman, Shalev and Wigderson [6]
constructed a fully explicit family of constant degree Cayley expanders. In this paper, we will
explore the construction of Rozenman, Shalev and Wigderson’s family of Cayley expanders and
the key ideas used in their paper. At the end, we will briefly discuss their extension of the Cayley
graph construction to Schreier graphs, which has the additional property that each graph lifts
into the next graph.

2. Background

2.1. Graph Theory. We briefly recall the definition of the zigzag product of an (n, d1, t1)-
graph G and a (d1, d2, t2)-graph H. Here, observe that the degree of G must be the number of
vertices of H (a slightly more general definition which allows G to be the edge disjoint union
of |V (H)|-regular graphs on the same vertex set can be found in [4]). To each tuple (v, e) of a
vertex v ∈ V (G) and an edge e ∈ E(G) incident to v, assign a number in [d1] so that for a fixed
vertex v∗, the set of tuples {(v∗, e)} are collectively assigned [d1]. The zigzag product of G and
H, first defined in [3], is denoted G z H, and is the graph on vertex set V (G)× V (H), with an
edge between (v, i) and (w, j) precisely if there is i′, j′ ∈ V (H) so that (i, i′), (j, j′) ∈ E(H) and
an edge e = (v, w) ∈ E(G) so that (v, e) is assigned i′ and (w, e) is assigned j′.

This zigzag product has nice properties; one is that G z H is an (nd1, d
2
2, t1 + t2)-graph. For

a graph G, define G2 to be the graph with vertices V (G) and edges corresponding to paths
of length exactly 2. If N is the normalized adjacency matrix of G, then N2 is the normalized
adjacency matrix of G2. Thus, if G is an (n, d1, t1)-graph, then G2 is an (n, d21, t

2
1)-graph.

Following [3], this is enough to combinatorially construct expander graphs: simply fix a
(d4, d2, 1/5)-graph H, define G1 := H2, and Gn+1 := (Gn)2 z H. With a bit more work, a
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similar construction gives explicit families of expander graphs: neighborhoods of Gn+1 can be
computed in polylog (|V (Gn+1)|) time.

2.2. Group Theory.

2.2.1. Commutators. We will see that in many of the constructions that we present, there is
a clear degenerate case when the groups involved are abelian. In fact, no infinite family of
expanding abelian Cayley graphs can have constant degree, and random abelian Cayley graphs
are disconnected with high probability [7]. In order for the main construction to work, all of
the groups involved need to have the “commutator” property, which in some sense implies that
a group is “very” non-abelian.

Definition 2.2.2. A commutator [a, b] ∈ G is defined as (ab)(ba)−1 or equivalently aba−1b−1.

Definition 2.2.3. We say a group G has the commutator property if every element g ∈ G
can be written as g = [a, b] for some a, b ∈ G.

Note that if a and b commute, then [a, b] = 1, and in an abelian group there are no nontrivial
commutators. Also note that the commutator property is stronger than the common group
theoretic notion of a “perfect group”, which requires only that the commutators of G generate
G.

A recent result relying on the classification of simple groups showed that in fact every finite
simple non-abelian group has the commutator property, which is promising for future construc-
tions of this nature [8].

We will see in Section 5 an algorithm for solving the commutator equation g = [a, b] for the
groups of interest to this paper.

2.2.4. Semidirect and Wreath Products. We assume that the reader is familiar with groups and
group actions. Recall the semidirect product:

Definition 2.2.5. Consider two groups K,H with a fixed group action ϕ of K on H. Then,
the group H oϕ K is the set H ×K with the operation

(h1, k1) · (h2, k2) = (h1(k1 · h2), k1k2).

We call this group the semidirect product of H and K. When the group action is obvious, we
simply write H oK.

For our purposes, we care about a specific example of a semidirect product, the wreath
product.

Definition 2.2.6. Suppose that A is a group and B is a subgroup of Sd, the group of permu-

tations on d elements. Then, denote by Ad the direct product
∏d
i=1A. The group action of B

onto {1, . . . , d} extends to a group action on elements (a1, . . . , ad) ∈ Ad by, for τ ∈ B,

τ · (a1, . . . , ad) =
(
aτ(1), . . . , aτ(d)

)
.

Then, we call the semidirect product Ad oB with this group action the wreath product A oB.

The wreath product can be defined directly, without using the semidirect product, which can
help to give a more intuitive idea of how it works. With A and B ⊆ Sd as before, we can define
A oB as the group with elements (a1, . . . , ad, τ), with ai ∈ A and τ ∈ B and with the operation

(a1, . . . , ad, τ) · (b1, . . . , bd, σ) =
(
a1bτ(1), . . . , adbτ(d), τσ

)
.

Thus, we can think of the wreath product as pointwise multiplication of vectors in Ad with the
second vector permuted by τ , and then with the product of τ and σ appended at the end.



CAYLEY EXPANDERS AND THE ZIGZAG PRODUCT 3

2.3. Cayley Graphs. Given a group G and a (multi-)set of generators Y ⊆ G, one can con-
struct its Cayley (multi-)graph, denoted C(G, Y ), to be the directed graph whose vertices
are elements of G and whose edges connect g to h if and only if g−1h ∈ Y . If the element
g−1h appears with multiplicity m in Y , then C(G, Y ) will have m many directed edges from
g to h. Notice that if Y is symmetric, that is, g−1h ∈ G has the same multiplicity in Y as
(g−1h)−1 = h−1g ∈ G, then C(G, Y ) will have m many directed edges from g to h precisely
when it has m many directed edges from h to g. Thus if Y is symmetric we can think of
C(G, Y ) as an undirected multigraph, with m edges between g and h. Note that according to
the definition here, edges are of the form (g, gy) for g ∈ G and y ∈ Y . So we see that the set of
outgoing edges from a vertex g is given by right multiplication by generators.

In this construction, we give a family of groups {Gi} and generating sets {γi} so that C(Gi, γi)
form an expanding family. For ease of exposition, we introduce a nonstandard definition:

Definition 2.3.1. For a group A and permutation group B ≤ Sd with ā ∈ Ad E A o B and a
subset β ⊂ B ≤ A oB, define

γ(ā, β) = {xāy : x, y ∈ β},
where x, ā, y and multiplication are to be interpreted as inside A oB.

For ā ∈ Ad, we use the notation B · ā := {b · ā : b ∈ B} for the B-orbit of ā. Note that inside
the group A oB, the group action of B is given by conjugation, i.e. b · ā = bāb−1.

A central theorem of this construction is the Cayley analogue of the zigzag theorem:

Theorem 2.3.2. For any group A and permutation group B ⊆ Sd
λ(A oB, γ(ā, β)) ≤ λ(Ad, B · ā) + λ(B, β).

We will see a sketch of a proof in the next section.

3. The Family of Expanders

To construct a family of Cayley expander graphs, Rozenman, Shalev and Wigderson define
a sequence of groups {Gi}∞i=1 along with generating sets {γi}∞i=1 such that {C(Gi, γi)}∞i=1 form
an expanding family. Crucial to this construction is the observation

Lemma 3.0.1. C(A oB, γ(ā, β)) = C(Ad, B · ā) z C(B, β).

Proof. The vertex sets are trivially equal, since both are defined to be Ad ×B.
Note that because the generating set for Ad is a single B-orbit, there is a natural labeling of

the edges near an element a ∈ Ad by elements in B, where we label the edge (a, a(b · ā)) as b.
We then replace each vertex of the graph of Ad with a cloud of B, with the b-th edge of a being
replaced by (a, b).

By the definition of the zigzag product, every edge is given by a “zig” from (a, σ) ∈ A oB to
(a, στ), then a “zag” specified by the label, i.e. (a(στ ·ā), στ) then a final “zig” to (a(στ ·ā), στζ).
Inside the group A o B we see that (a(στ · ā), στζ) = (a, σ)(1, τ)(ā, 1)(1, ζ). This is clearly of
the form (a, σ)xāy for every x, y ∈ β, which is exactly the set of neighbors for an arbitrary
vertex (a, σ) that are produced by the generating set γ(ā, β). Thus, the vertex sets are identical
and the neighbors of every vertex are identical, so the two sides of the equation are equal as
graphs. �

As a corollary, this implies Theorem 2.3.2 via the expansion properties of the standard zigzag
product.

With this in mind we define G1 := Ad and Gn+1 := Gn o Ad. To define γn+1, we will
define β ⊆ Ad and an ∈ Gn so that λ(Ad, β) < 1/1000 and λ((Gn)d, Ad · an) < 1/50. Thus
λ(Gn oAd, γ(an, β)) < 1/1000 + 1/50; define γn+1 := {xy : x, y ∈ γ(a, β)} so that

λ(Gn oAd, γn+1) < (1/1000 + 1/50)2 < 1/1000.

Furthermore, β can be chosen so that |β| < d1/28/1040, so |γ(an, β)| = |β|2 and

|γn+1| ≤ |γ(an, β)|2 = |β|4 < d1/7/1040
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for every n; this means that the C(Gi, γi) are constant degree expanders.

Recently, Kassabov in [5] showed that for some d ≤ 1010
9
, such a β ⊆ Ad exists. It is left to

define a suitable an (or equivalently, a suitable Ad · an); we want λ((Gn)d, Ad · an) < 1/50. To
do so, we need:

Definition 3.0.2. Let G be a group and let Y ⊆ G so that d > |Y |. Define Y (d) to be the set of
balanced vectors, that is, the vectors (v1, . . . , vd) ⊆ Gd such that each u ∈ Y appears precisely
bd/|Y |c times and the rest of the elements are 1 ∈ G.

It is easy to see that any Y (d) is an Ad-orbit, as long as d is sufficiently large (d > 2|Y | will
do). Now, for each a ∈ Yn, write a = [xa, ya] and define the set

Y ∗n :=
⋃
a∈γn
{xa, ya, x−1a , y−1a , x−1a y−1a , yaxa} ∪ {1}.

Now, for some constant c ∈ N to be chosen later, we can define

Xn := (c · Yn) ∪ Y ∗n
where c ·Yn is the multiset consisting of repeating Yn precisely c times. Then Rozenman, Shalev
and Wigderson prove:

Theorem 3.0.3. Define λn := λ(Gn, γn). If d ≥ k2|Xn|7, then

λ
(

(Gn)d, (Xn)(d)
)
< 0.01 + max

{
λn + 7

c
, exp

(
−kc(1− λn)

106

)}
.

Thus, a suitable an can be defined by picking c = 103 and k = 105. We remark that
|Xn| ≤ (c+ 7)|γn| ≤ d1/7/1040; thus k2|Xn|7 ≤ k2(c+ 7)7d/10280 < d and the assumption in the
above theorem is always true (for the choice of parameters c = 103 and k = 105).

4. Generating sets of Gd

In Rozenman, Shalev and Wigderson’s proof of Theorem 3.02, they break into two cases.
Denote by W (G) the vector space of real valued functions equipped with the L2 inner product.
Then, to show the theorem, we must see that for all w ∈W (Gd)⊥ with ‖w‖ = 1, either

‖Ex∈X(d) [Px(w)]‖ ≤ 0.01 + λ+
7

c
or

‖Ex∈X(d) [Px(w)]‖ ≤ 0.01 + e−kc(1−λ)/10
6
.

Ultimately, they find that it is sufficient to prove this for all w ∈ W⊗r⊥ ⊗W
⊗(d−r)
‖ , where W‖

is the subspace of constant functions and W⊥ is the orthogonal complement of W‖. Thus, they

can break into two cases based upon r. When r is small, that is, r ≤ 0.1
√
d/|X|, the proof

follows somewhat quickly, and does not depend upon our choice of G. The tricky case is the
case of r large. As has been the theme, the statement does not hold for abelian groups; here,
then, we must leverage the properties of our chosen family of graphs. The strategy used is to
first show that G×G is an expander, and then reduce the Gd case to the G×G case.

To see that G×G is an expander, first we give the following definition:

Definition 4.0.1. For Y ⊂ G, with G a group, define Ỹ = {(y, y−1)|y ∈ Y }.

In this section, we will denote by Y ∗ the set obtained by the same construction as for γ∗n.
With these definitions in hand, we can obtain the following theorem:

Theorem 4.0.2. If λ(G, Y ) < 1− ε, and all elements of Y are commutators of G, then

λ(G×G, Ỹ ∗) ≤ 1− ε

21|Y ∗|2
.
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As Rozenman, Shalev and Wigderson note, this theorem fails in abelian groups; Y can

generate G, but Ỹ will only generate {(g, g−1)|g ∈ G} in this case. Likewise, {(y, y)|y ∈ Y }
generates {(g, g)|g ∈ G}, rather than the whole of G. The problem, as they note, is that the
coordinates here are highly correlated. It is somewhat surprising, then, that the commutator
property is sufficient to break this correlation and allow us to generate the whole group. To
see why this theorem holds, note that Y ∗ contains, for all y ∈ Y , ay, by, and a−1y b−1y , and note

y = [ay, by]. Thus, if Z is the set of length 3 words in Ỹ ∗, we find that we can write

(y, 1) = (ay, a
−1
y )(by, b

−1
y )(a−1y b−1y , (a−1y b−1y )−1),

so (Y, 1) ⊂ Z. Likewise, we find that (1, Y ) ⊂ Z. Thus, because we had the commutator

property, we are able to take the set Ỹ ∗, where we would expect the coordinates to be correlated,
and instead use the set {(Y, 1) ∪ (1, Y )}, where the coordinates are uncorrelated. Because of
this, we can find that

C(G×G, {(Y, 1) ∪ (1, Y )}) ⊂ C(G×G,Z),

so we can bound the spectral gap of C(G × G,Z) and use this to prove Theorem 3.0.2. The
proof of the reduction of the Gd case to the G × G case is fairly computationally involved, so
we will omit it.

5. Commutators

In order for the construction to be explicit, we need an efficient algorithm for constructing
an expanding generating set α ⊂ Gdn that is a single B-orbit. We have seen that this is possible
if we can find a polynomial time algorithm for solving the commutator equation a = [b, c] for
all a ∈ Gn. This algorithm will be defined inductively on n. For the base case, a result of [9]
gives an algorithm for the commutator equation in Ad for d ≥ 5.

Nikolov [10] showed that if A and B have the commutator property, then so does A oB. We
would like an algorithmic version of this theorem. Given an oracle to the commutator algorithm
for A and B, we want to find a commutator algorithm for A oB that is poly-logarithmic in the
order of A oB.

As a matter of notation, since A,Ad and B are isomorphic to subgroups of A o B, we will
sometimes conflate these groups with their respective inclusions in the wreath product.

First, note that every element in A oB can be expressed uniquely as a product βα for β ∈ B
and α ∈ A, with (a1, . . . , ad, σ) = (1A, . . . , 1A, σ)(a1, . . . , ad, 1B). Thus, we need to solve the
equation βα = [b1x, b2y]. Projecting [b1x, b2y] into B, we note that the B-component of the
commutator must be [b1, b2]. One can check that

[b1x, b2y] = [b1, b2]x
σ1yσ2x−σ3y−σ4

σ1 = b2b
−1
1 b−12 σ2 = σ3 = b−11 b−12 σ4 = b−12

where xσi denotes the conjugation by some σi ∈ B, or equivalently the action of σi on x by
permutation of its coordinates. We have by our hypothesis an oracle for [b1, b2], so we need only
find solutions x and y to α = xσ1yσ2x−σ3y−σ4 .

For this Rozenman, Shalev, and Wigderson give a general algorithm, which we present an
outline of:

Lemma 5.0.1. For permutations σ1, σ2, σ3, σ4 ∈ Sd and α = (α1, . . . , αd) ∈ Ad, there exists an
algorithm which solves the system of equations

αi = xσ1(i)yσ2(i)x
−1
σ3(i)

y−1σ1(i) (1)

for 1 ≤ i ≤ d

Proof. Note first that each xi, x
−1
i , yi, y

−1
i appears exactly once in the system of equations. We

would like to have a system of independent equations, i.e. each xi is found in the same equation
as x−1i and similarly for the yi. This can be achieved by substitution; for each xi not in the
same equation as its inverse, solve for xi in one equation and substitute it in the other. This
gives a reduced set of independent equations.
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Given this system, a theorem of [10] says that every equation contains a “hidden commutator”
of the form δ` = ζ1xiζ2yjζ3x

−1
i ζ4y

−1
j ζ5 for some xi, yj . We can then transform this by a change

of variables into a true commutator equation. Set x̃i := ζ3xiζ4 to see

δ` = ζ1ζ4[x̃i, ỹj ]ζ3ζ2ζ5

[x̃i, ỹj ] = (ζ1ζ4)
−1δ`(ζ3ζ2ζ5)

−1.

Using our oracle for commutator equations in A, we can solve this for x̃i and then recover xi
via the change of variable equation. Thus, we can find xi and yi for all i, and so we have the
x, y ∈ Ad that solves the commutator equation in the wreath product.

In all, this algorithm runs in time polylog (|Gn|) for all n, and thus is explicit. �

6. Schreier Graphs and Lifts

Another significant set of graphs which are described algebraically are the Schreier graphs.
Rozenman, Shalev and Wigderson define them as follows:

Definition 6.0.1. Fix a finite group H and a subgroup H ′. Let U be a symmetric set of
elements in H. Then, Sch(H,H ′, U) is the graph with vertex set H/H ′ and edges (gH ′, ugH ′),
with g ∈ H and u ∈ U .

This will be a |U |-regular graph. Notice that if H ′ is trivial, then this is just the Cayley
graph C(H,U). Furthermore, they show that λ(Sch(H,H ′, U)) ≤ λ(C(H,U)), so we can study
the spectral gap of all the Schreier graphs of H just by studying the spectral gap of the Cayley
graph of H.

We define the following sequences of groups as Rozenman, Shalev and Wigderson do:

Definition 6.0.2. For some K a subgroup of Sd, let K1 = K and Kn+1 = Kn oK. Let Tn,d be
the rooted depth n d-regular tree. Let Sym(n, d) be the symmetry group on Tn,d. Then, let En
be the leaves of Tn,d; note that Sym(n, d) acts naturally on En.

Ultimately, they use these to give a similar theorem as for Cayley graphs:

Theorem 6.0.3. For a generating set Q ⊂ K satisfying that |Q| ≤ d1/4/2 and λ(K, [d], Q) ≤ 1/4,
then there exist sets Qn ⊂ Kn with λ(Kn, En, Qn) ≤ 1/4, and Qn is computable in polylog (|En|)
time.

This theorem is proven using the zigzag product, as was done using Cayley graphs. Such
sets Q exist for many groups K; the authors go on to see specifically that, for K = Sd with d
sufficiently large, such a Q exists. This is done by noting that the probability that, for d ≥ 100,
a random subset of 100 permutations satisfied the needed property with probability at least
1/2, which was shown by Friedman in [11].

Now, we define what it means for a graph to lift.

Definition 6.0.4. Let X be a graph on vertices v1, . . . , vn. Then, a d-lift of X is a graph Y
with vertices wi,k for i ∈ [n], k ∈ [d]. Note that there are nd such vertices. Then, the edge set of
Y is given by, for all e = (vi, vj) in the edge set of X, the edges (wi,k, wi,σe(k)) for all k, with
σe ∈ Sd. We call for any fixed i the set {wi,k|k ∈ d} the fiber above vi.

Rozenman, Shalev and Wigderson then describe some properties of lifts. Note that if X is
d-regular, then a lift of X is also d-regular by definition. Lifts are transitive, in that if X lifts
to Y and Y lifts to Z, then X lifts to Z. Finally, they note that λ(Y ) ≥ λ(X) if Y is a lift of
X.

The question is, then, what are interesting examples of lifts in graphs? As it turns out, the
set of Schreier graphs they gave above satisfy this lifting property:

Theorem 6.0.5. Sch(Kn, En, Qn) d-lifts to Sch(Kn+1, En+1, Qn+1).

Then, letting K = Sd where d ≥ 4 · 1004. The Q shown to exist earlier will work for this
construction. This is shown inductively, and hinges on the existence of an infinite set Q∞. This
set has the following property:
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Theorem 6.0.6. There is a natural map from Sym(n, d) to Sym(k, d), given by restricting
τ ∈ Sym(n, d) to the first k levels of Tn,d. We call this map the restriction map. We can also
define Sym(∞, d), the group of symmetries on the infinite d-regular tree. Then, there exists a
subset Q∞ of Sym(∞, d) such that, for all n, Qn is the restriction of Q∞ to Sym(n, d).

Using this, Rozenman, Shalev, and Wigderson obtain a sequence of expander graphs with
the desired lifting property. This exemplifies the potential of the wreath product construction.
Though we originally used it to construct Cayley expanders, it can be used to produce other
types of expanders too, which may themselves have other interesting properties.

7. Future Directions

While the construction of Rozenman, Shalev, and Wigderson is explicit in the sense that the
neighbors of a vertex can be found in time polynomial in the length of the index of the vertex,
the construction suffers from large constants in that the main theorem holds only for Ad with

d ≥ 1010
9
, and thus the smallest usable seed group in this construction has size (1010

9
)! which is

too large for any practical application. Thus, we should be interested in other similar iterative
constructions using the semidirect product but with alternative seed groups. The recent proof
of the Ore conjecture gives hope that possibly some other family of finite simple groups may
give rise to an analogous expander family. Using the semidirect product construction, [4] shows
that expansion is not a group property, that is there exist groups for which only certain bounded
size generating sets give rise to expanding Cayley graphs. Thus, constructing expanding Cayley
graphs is as much an exercise in constructing good generating sets as it is about choosing
amenable families of groups.
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