CS 6815: Lecture 24

Instructor: Eshan Chattopadhyay

Scribes: William Gao, Lucy Li

November 20, 2018

1 Lossless Condensers

Definition 1.1. We define $\phi_V(G,k) = \frac{1}{k} \cdot \min_{S \subseteq [V]} \{ |\Gamma(S) \setminus S| : |S| = k \}$

1. For a random (n, d)-graph,

$$\phi_V(G,\varepsilon_n) \ge d - 2.01$$

2. [3] For a Ramanujan expander (the best possible spectral expander),

$$\phi_V(G,\varepsilon_n) \approx \frac{d}{2}$$

Consider a (k_{max}, ε) -lossless vertex expander that is a bipartite graph with N nodes on the left and M nodes on the right, where each of the left nodes has degree D. Then we can say that if a subset S of nodes on the left side has $|S| \leq k_{max}$, then $|\Gamma(S)| \geq (1 - \varepsilon) \cdot |S| \cdot D$.

We can build a $(k_{max} \leq N, \varepsilon)$ -lossless expander on (N, M, D)-bipartite graphs $(N \text{ is number of nodes on the left}, M \text{ is the number of nodes on the right, and } D \text{ is the left degree}), for <math>M \leq D^2 \cdot k_{max}^{1+\alpha}$, $D = \mathbf{poly}(\log N, \frac{1}{\varepsilon}, \frac{1}{\alpha})$ [2].

Theorem 1.2. $\forall \varepsilon > 0$, for $M = \Theta(N), D = O_{\varepsilon}(1)$, there exist D-regular (N, M)-bipartite expanders with are $(\Omega(\frac{M}{D}), \varepsilon)$ -lossless. [1]

The ingredients to the construction for the above theorem as shown by the diagram are as follows:

- 1. A Permutation Conductor $(E_1, C_1) : \{0, 1\}^{n-20} \times \{0, 1\}^{14a} \to \{0, 1\}^{n-20a} \times \{0, 1\}^{14a}$
 - (a) (E_1, C_1) is a permutation
 - (b) For any $k \leq n 30a$, if X is an (n 20a, k) source, $E_1(X, U_{14a})$ is ε -close to (n 20a, k + 6a) source.
- 2. $(E_2, C_2): \{0, 1\}^{20a} \times \{0, 1\}^a \to \{0, 1\}^{14a} \times \{0, 1\}^{21a}$. For $k_1 \leq 14a$, if Y is a $(20a, k_1)$ source
 - (a) $E_2(Y, U_a)$ is ε -close to a $(14a, k_1)$ -source.
 - (b) (E_2, C_2) is lossless. $(E_2, C_2)(Y, U_a)$ is ε -close to a $(35a, k_1 + a)$ source.
- 3. $E_3: \{0,1\}^{35a} \times \{0,1\}^a \to \{0,1\}^{17a}$ is lossless up to 15a entropy.

We note that E_2 and E_3 exist due to the probabilistic method.

Claim 1.3. The constructed function $\{0,1\}^n \times \{0,1\}^{2a} \rightarrow \{0,1\}^{n-17a}$ is lossless up to n-30a. This means that if we start with a source X with entropy $k \leq n-30a$, then the output will be ε -close to a source with entropy k+2a.

Proof. Case (i): $\forall x_1 \in \text{Supp}(X_1), H_{\infty}(X_2 \mid X_1 = x_1) \ge 14a$. In this case, we observe that since R_1 is ε -close to uniform and $H_{\infty}(X_1) \ge k - 20a$, we can conclude that $H_{\infty,\varepsilon}(Z_1) \ge k - 14a$. Case (ii): $\forall x_1 \in \text{Supp}(X_1), H_{\infty}(X_2 \mid X_1 = x_1) < 14a.$

In this case, we know that $H_{\infty}(X_1) \ge k - 14a$, $H_{\infty}(R_1) = H_{\infty}(X_2)$, and $H_{\infty}(X_1, R_1) = k$. Then, because (E_1, C_1) is a permutation, since the input contains k bits of entropy, so does the output. From these two cases, we can conclude that

$$H_{\infty,\varepsilon}\left(Z_1\right) \ge k - 14a$$

Next, we know that $H_{\infty}(Z_1, S_2, R_2) = k + a$, since (E_2, C_2) and (E_1, C_1) are lossless. This means that for all z_1 ,

$$H_{\infty,\varepsilon}\left(S_2, R_2 \mid Z_1 = z_1\right) \le 15a.$$

 E_3 is lossless up to 15a bits of entropy, so

$$H_{\infty,\varepsilon}(Z_2 \mid Z_1 = z_1) = H_{\infty,\varepsilon}(S_2, R_2 \mid Z_1 = z_1) + a.$$

Finally,

$$H_{\infty,\varepsilon}(Z_1, Z_2) = H_{\infty,\varepsilon}(Z_1, R_2, S_2) + a = k + 2a$$

•	-	-	
-			

References

- [1] M Capalbo, O Reingold, S Vadhan, and A Wigderson. Randomness conductors and constant degree expansions beyond the degree 2 barrier. In *Proc. ACM STOC*, pages 659–668, 2002.
- [2] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and randomness extractors from parvaresh-vardy codes. *Journal of the ACM (JACM)*, 56(4):20, 2009.
- [3] Nabil Kahale. Eigenvalues and expansion of regular graphs. Journal of the ACM (JACM), 42(5):1091–1106, 1995.