CS 6815: Lecture 19

Instructor: Eshan Chattopadhyay

Scribes: Will Gao, Cosmo Viola
$11 / 1 / 2018$

1 Recap: Nisan-Zuckerman PRG

Consider a machine given S space and suppose we want R^{\prime} random bits. We will see that we can stretch R bits to $R S^{\gamma}(0<\gamma<1)$ bits using space $O(S), R \geq c S$ for a c we will describe later. To get even greater numbers of random bits, we can compose this construction, producing a chain stretching the number of random bits $S \rightarrow S^{1+\gamma} \rightarrow S^{1+2 \gamma} \rightarrow \ldots$.

Take an $\left(\frac{n}{2}, \epsilon^{\prime}\right)$-extractor with large entropy Ext : $\{0,1\}^{n} \times\{0,1\}^{d} \rightarrow\{0,1\}^{m}$, where $n=c S$ is large. Let $X \sim U_{n}$ and $Y_{i} \sim U_{d}$ for $1 \leq i \leq t$. We define our PRG as outputting the sequence of bits $\operatorname{Ext}\left(X, Y_{1}\right), \ldots, \operatorname{Ext}\left(X, Y_{t}\right)$. We will use $n+d t=R$ random bits, and we are producing $m t=R^{\prime}=R S^{\gamma}$ random bits. Here, the parameters are:

1. $d t=R-n$
2. $m t=R S^{\gamma}$
3. Pick $m=\Omega(S)$, i.e. a small constant times S, so $t=\Omega\left(\frac{R}{S^{1-\gamma}}\right)$ and $d=O\left(S^{1-\gamma}\right)$.

We have extractors such that $d=O\left(\log \left(\frac{S}{\epsilon^{\prime}}\right)\right)$ where $\epsilon^{\prime}=2^{-\Omega\left(S^{1-\gamma}\right)}$. Thus, we can take $\epsilon=$ $\left(\epsilon^{\prime}+\frac{1}{2} S\right) t$.

2 A Closed But Unpublished Problem

Instead of a final project, we can solve the following problem. Consider a branching program of width 2 and length n, i.e. one of the following form:

The question is to design a PRG for $(2, n)$-ROBPs with a seed $O(\log n)$ in \log space. This can be done using an ϵ-biased space, with $\epsilon=\frac{1}{100 n}$; all that is left is the proof that this construction works.

3 Seedless (Deterministic) Extraction

Recall that there does not exist an extractor for all (n, k)-sources.

Definition 3.1. Suppose there are two sources $X \sim\left(n, k_{1}\right), Y \sim\left(n, k_{2}\right)$. Ext: $\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow$ $\{0,1\}^{m}$ is a $\left(n, k_{1}, k_{2}, \varepsilon\right)-2$-source extractor if

$$
\left|\operatorname{Ext}(X, Y)-U_{m}\right| \leq \varepsilon
$$

For $k_{1}=k_{2} \geq \log n+2 \log (1 / \varepsilon)+1$, such extractors exist.
Theorem 3.2. For all $\delta>0$, there exists an explicit 2 -source extractor for $k_{1}+k_{2} \geq(1+\delta) n$, $m=1$ with $\varepsilon=2^{\left(n-k_{1}-k_{2}\right) / 2}$.

Proof. Let $x \sim X, y \sim Y$ be samples from the sources. Then, the explicit extractor Ext : $\{0,1\}^{n} \times$ $\{0,1\}^{n} \rightarrow\{0,1\}$ is given by $\operatorname{Ext}(x, y)=\langle x, y\rangle$. Let us denote $P_{x}=\operatorname{Pr}(X=x)$. It follows that

$$
\begin{aligned}
& \left|\underset{x \sim X, y \sim Y}{\mathbb{E}}\left[(-1)^{\langle x, y\rangle}\right]\right|^{2}=\left|\sum_{x \in \operatorname{supp}(X)} \sqrt{P_{x}}\left(\sqrt{P_{x}} \underset{y \sim Y}{\mathbb{E}}\left[(-1)^{\langle x, y\rangle}\right]\right)\right|^{2} \\
& \leq \underset{x \sim X}{\mathbb{E}}\left(\underset{y \sim Y}{\mathbb{E}}\left[(-1)^{\langle x, y\rangle}\right]\right)^{2} \\
& \leq \frac{1}{2^{k_{1}}} \sum_{x \in \operatorname{supp}(X)}\left(\underset{y \in Y}{\mathbb{E}}\left[(-1)^{\langle x, y\rangle}\right]\right)^{2} \\
& =\frac{2^{n}}{2^{k_{1}}} \underset{x \sim U_{n}}{\mathbb{E}}\left(\underset{y \sim Y}{\mathbb{E}}\left[(-1)^{\langle x, y\rangle}\right]\right)^{2} \\
& =\frac{2^{n}}{2^{k_{1}}} \underset{\substack{\text { a } \\
x \sim U_{n} \\
\mathbb{y \sim Y} Y, y^{\prime} \sim Y^{\prime} \\
Y, Y^{\prime} \text { iid }}}{\mathbb{E}}\left[(-1)^{\left\langle x, y+y^{\prime}\right\rangle}\right] \quad \text { (Product of Indepedent Expectations) } \\
& =\frac{2^{n}}{2^{k_{1}}} \underset{y \in Y, y^{\prime} \in Y^{\prime}}{\mathbb{E}} \underset{x \in U_{n}}{\mathbb{E}}\left[(-1)^{\left\langle x, y+y^{\prime}\right\rangle}\right] \\
& =\frac{2^{n}}{2^{k_{1}}} \text { Collision } \operatorname{Pr}(Y) \\
& \leq \frac{2^{n}}{2^{k_{1}} 2^{k_{2}}} \\
& \text { (Cauchy-Schwarz) } \\
& \text { (Min-entropy) } \\
& \text { (Only non-zero if collision in } y, y^{\prime} \text {) }
\end{aligned}
$$

Theorem 3.3. There exists an explicit 2 -source extractor for $k_{1} \geq(1 / 2+\delta) n, k_{2} \geq c \log n, m=1$ with $\varepsilon=2^{-\Omega\left(k_{2}\right)}$.

Proof. Let $X, Y \sim \mathbb{F}_{p}$ with $p \geq 2^{n}$ prime, so $k_{1} \geq(1 / 2+\delta) \log p$ and $k_{2} \geq c \log \log p$. This extractor is based on a Paley graph, the Cayley graph for $\mathbb{Z} / p \mathbb{Z}$, where $p \equiv 1(\bmod 4)$. We connect two points if $x+y \equiv r^{2}(\bmod p)$ for some r; equivalently, $x+y$ is a quadratic residue. Then, define the map $\chi: \mathbb{F}_{p} \rightarrow\{-1,1\}$ as follows:

$$
\chi(z)= \begin{cases}1 & \text { if } z \text { is a square over } \mathbb{F}_{p} \\ -1 & \text { otherwise }\end{cases}
$$

Notice that this map preserves multiplication, and if $\chi\left(x^{2}\right)=1$, then $\chi(x)=\chi\left(x^{-1}\right)$.
Then, we define

$$
\operatorname{Ext}(x, y)=\frac{\chi(x+y)+1}{2}
$$

In what follows, it could be helpful to think about flat sources; consider

$$
\left|\sum_{\substack{x \sim \operatorname{supp}(X) \\ y \sim \operatorname{supp}(Y)}}(-1)^{\operatorname{Ext}(x+y)}\right|=\left|\sum_{\substack{x \sim \operatorname{supp}(X) \\ y \sim \operatorname{supp}(Y)}} \chi(x+y)\right| .
$$

In the part of the proof that follows, we will use a big hammer from algebraic geometry, the Weil bound, which we will not prove.
Theorem 3.4 (Weil bound). Let f be a degree d polynomial over \mathbb{F}_{p} with $f \neq g^{2}$ for any g. Then, $\left|\sum_{x \in \mathbb{F}_{p}} \chi(f(x))\right| \leq(d-1) \sqrt{p}$.

Also recall Holder's Inequality:

$$
\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \leq\left(\sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}\left(\sum_{i=1}^{n} b_{i}^{q}\right)^{1 / q} \quad \frac{1}{p}+\frac{1}{q}=1, \quad p, q>1
$$

Observe that

$$
\begin{aligned}
\left.\sum_{\substack{x \in \operatorname{supp}(X) \\
y \in \operatorname{supp}(Y)}}(-1)^{\operatorname{Ext}(x, y)}\right|^{2 \ell} & =\left|\sum_{\substack{x \in \operatorname{supp}(X) \\
y \in \operatorname{supp}(Y)}} \chi(x+y)\right|^{2 \ell} \\
& =\left|\sum_{x \in \operatorname{supp}(X)} 1 \sum_{y \in \operatorname{supp}(Y)} \chi(x+y)\right|^{2 \ell} \\
& \leq|\operatorname{supp}(X)|^{2 \ell-1} \sum_{x \in \operatorname{supp}(X)}\left|\sum_{y \in \operatorname{supp}(Y)} \chi(x+y)\right|^{2 \ell} \quad \text { (Holder's Inequality) } \\
& \leq|\operatorname{supp}(X)|^{2 \ell-1} \sum_{x \in \mathbb{F}_{p}}\left|\sum_{y \in \operatorname{supp}(Y)} \chi(x+y)\right|^{2 \ell} \mid \\
& \leq|\operatorname{supp}(X)|^{2 \ell-1}\left|\sum_{\substack{x \in \mathbb{F}_{p} \\
y_{1}, \ldots, y_{2 \ell \ell} \in \operatorname{supp}(Y)}} \chi\left(x+y_{1}\right) \cdots \chi\left(x+y_{2 \ell}\right)\right| \quad \text { (Triangle Inequality) } \\
& \leq|\operatorname{supp}(X)|^{2 \ell-1} \sum_{y_{1}, \ldots, y_{n} \in \operatorname{supp}(Y)}\left|\sum_{x \in \mathbb{F}_{p}} \chi\left(\prod_{i=1}^{2 \ell}\left(x+y_{i}\right)\right)\right| \quad \text { (T) }
\end{aligned}
$$

Let Δ_{1} be the number of elements for which all the y_{i} are distinct and are thus certainly not a square. Let Δ_{2} be the number of remaining elements, which might be a square. The preceding inequality implies that

$$
\left|\sum_{\substack{x \sim X \\ y \sim Y}} \chi(x+y)\right| \leq|\operatorname{supp}(x)|^{\frac{2 \ell-1}{2 \ell}}\left(\Delta_{1}^{\frac{1}{2 \ell}}+\Delta_{2}^{\frac{1}{2 \ell}}\right)
$$

Then, we can see that
$\Delta_{1} \leq(4|\operatorname{supp}(Y)| \ell)^{\ell} \leq|\operatorname{supp}(Y)|^{2 \ell} \sqrt{p}(2 \ell-1)$ by the Weil bound and

$$
\Delta_{2} \leq\binom{|\operatorname{supp}(Y)|}{2 \ell}(2 \ell) \leq|\operatorname{supp}(Y)|^{2 \ell} .
$$

This implies that

$$
\left|\sum_{\substack{x \sim X \\ y \sim Y}} \chi(x+y)\right| \leq \frac{p^{\frac{1}{4 \ell}}}{|\operatorname{supp}(X)|^{\frac{1}{2 \ell}}}+\frac{2 \sqrt{\ell} p^{\frac{1}{2 \ell}}}{|\operatorname{supp}(Y)|^{\frac{1}{2}}|\operatorname{supp}(X)|^{\frac{\ell}{2}}}
$$

Thus, we can set ℓ such that $p^{\frac{1}{\ell}}=|\operatorname{supp}(Y)|$.

