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1 Recap: Nisan-Zuckerman PRG

Consider a machine given S space and suppose we want R′ random bits. We will see that we can
stretch R bits to RSγ (0 < γ < 1) bits using space O(S), R ≥ cS for a c we will describe later.
To get even greater numbers of random bits, we can compose this construction, producing a chain
stretching the number of random bits S → S1+γ → S1+2γ → . . . .

Take an (n2 , ε
′)-extractor with large entropy Ext : {0, 1}n × {0, 1}d → {0, 1}m, where n = cS

is large. Let X ∼ Un and Yi ∼ Ud for 1 ≤ i ≤ t. We define our PRG as outputting the sequence
of bits Ext(X,Y1), . . . ,Ext(X,Yt). We will use n + dt = R random bits, and we are producing
mt = R′ = RSγ random bits. Here, the parameters are:

1. dt = R− n

2. mt = RSγ

3. Pick m = Ω(S), i.e. a small constant times S, so t = Ω
(

R
S1−γ

)
and d = O(S1−γ).

We have extractors such that d = O
(
log
(
S
ε′

))
where ε′ = 2−Ω(S1−γ). Thus, we can take ε =

(ε′ + 1
2S)t.

2 A Closed But Unpublished Problem

Instead of a final project, we can solve the following problem. Consider a branching program of
width 2 and length n, i.e. one of the following form:

Start ◦ ◦ . . . ◦ ◦ Accept

◦ ◦ . . . ◦ ◦

The question is to design a PRG for (2, n)-ROBPs with a seed O(log n) in log space. This can
be done using an ε-biased space, with ε = 1

100n ; all that is left is the proof that this construction
works.

3 Seedless (Deterministic) Extraction

Recall that there does not exist an extractor for all (n, k)−sources.
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Definition 3.1. Suppose there are two sources X ∼ (n, k1), Y ∼ (n, k2). Ext : {0, 1}n × {0, 1}n →
{0, 1}m is a (n, k1, k2, ε)− 2−source extractor if

|Ext(X,Y )− Um| ≤ ε

For k1 = k2 ≥ log n+ 2 log(1/ε) + 1, such extractors exist.

Theorem 3.2. For all δ > 0, there exists an explicit 2−source extractor for k1 + k2 ≥ (1 + δ)n,
m = 1 with ε = 2(n− k1 − k2)/2.

Proof. Let x ∼ X, y ∼ Y be samples from the sources. Then, the explicit extractor Ext : {0, 1}n×
{0, 1}n → {0, 1} is given by Ext(x, y) = 〈x, y〉. Let us denote Px = Pr(X = x). It follows that

∣∣∣∣ E
x∼X,y∼Y

[
(−1)〈x,y〉

]∣∣∣∣2 =

∣∣∣∣∣∣
∑

x∈supp(X)

√
Px

(√
Px E

y∼Y

[
(−1)〈x,y〉

])∣∣∣∣∣∣
2

≤ E
x∼X

(
E
y∼Y

[
(−1)〈x,y〉

])2

(Cauchy-Schwarz)

≤ 1

2k1

∑
x∈supp(X)

(
E
y∈Y

[
(−1)〈x,y〉

])2

(Min-entropy)

=
2n

2k1
E

x∼Un

(
E
y∼Y

[
(−1)〈x,y〉

])2

=
2n

2k1
E

x∼Un
E

y∼Y,y′∼Y ′
Y,Y ′iid

[
(−1)〈x,y+y′〉

]
(Product of Indepedent Expectations)

=
2n

2k1
E

y∈Y,y′∈Y ′
E

x∈Un

[
(−1)〈x,y+y′〉

]
=

2n

2k1
Collision Pr(Y ) (Only non-zero if collision in y, y′)

≤ 2n

2k12k2

Theorem 3.3. There exists an explicit 2−source extractor for k1 ≥ (1/2 + δ)n, k2 ≥ c log n, m = 1
with ε = 2−Ω(k2).

Proof. Let X,Y ∼ Fp with p ≥ 2n prime, so k1 ≥ (1/2 + δ) log p and k2 ≥ c log log p. This extractor
is based on a Paley graph, the Cayley graph for Z/pZ, where p ≡ 1 (mod 4). We connect two
points if x+ y ≡ r2 (mod p) for some r; equivalently, x+ y is a quadratic residue. Then, define the
map χ : Fp → {−1, 1} as follows:

χ(z) =

{
1 if z is a square over Fp
−1 otherwise

.

Notice that this map preserves multiplication, and if χ(x2) = 1, then χ(x) = χ(x−1).
Then, we define

Ext(x, y) =
χ(x+ y) + 1

2
.
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In what follows, it could be helpful to think about flat sources; consider∣∣∣∣∣∣∣∣
∑

x∼supp(X)
y∼supp(Y )

(−1)Ext(x+y)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

x∼supp(X)
y∼supp(Y )

χ(x+ y)

∣∣∣∣∣∣∣∣ .
In the part of the proof that follows, we will use a big hammer from algebraic geometry, the

Weil bound, which we will not prove.

Theorem 3.4 (Weil bound). Let f be a degree d polynomial over Fp with f 6= g2 for any g. Then,∣∣∣∑x∈Fp χ (f(x))
∣∣∣ ≤ (d− 1)

√
p.

Also recall Holder’s Inequality:∣∣∣∣∣
n∑
i=1

aibi

∣∣∣∣∣ ≤
(

n∑
i=1

api

)1/p( n∑
i=1

bqi

)1/q
1

p
+

1

q
= 1, p, q > 1

Observe that∣∣∣∣∣∣∣∣
∑

x∈supp(X)
y∈supp(Y)

(−1)Ext(x,y)

∣∣∣∣∣∣∣∣
2`

=

∣∣∣∣∣∣∣∣
∑

x∈supp(X)
y∈supp(Y )

χ(x+ y)

∣∣∣∣∣∣∣∣
2`

=

∣∣∣∣∣∣
∑

x∈supp(X)

1
∑

y∈supp(Y )

χ(x+ y)

∣∣∣∣∣∣
2`

≤ | supp(X)|2`−1
∑

x∈supp(X)

∣∣∣∣∣∣
∑

y∈supp(Y )

χ(x+ y)

∣∣∣∣∣∣
2`

(Holder’s Inequality)

≤ | supp(X)|2`−1
∑
x∈Fp

∣∣∣∣∣∣
∑

y∈supp(Y )

χ(x+ y)

∣∣∣∣∣∣
2`

≤ | supp(X)|2`−1

∣∣∣∣∣∣∣∣
∑
x∈Fp

y1,...,y2`∈supp(Y )

χ(x+ y1) · · ·χ(x+ y2`)

∣∣∣∣∣∣∣∣
≤ | supp(X)|2`−1

∑
y1,...,yn∈supp(Y )

∣∣∣∣∣∣
∑
x∈Fp

χ

(
2∏̀
i=1

(x+ yi)

)∣∣∣∣∣∣ (Triangle Inequality)

Let ∆1 be the number of elements for which all the yi are distinct and are thus certainly not a
square. Let ∆2 be the number of remaining elements, which might be a square. The preceding
inequality implies that ∣∣∣∣∣∣∣∣

∑
x∼X
y∼Y

χ(x+ y)

∣∣∣∣∣∣∣∣ ≤ |supp(x)|
2`−1
2` (∆

1
2`
1 + ∆

1
2`
2 )
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Then, we can see that

∆1 ≤ (4 |supp(Y )| `)` ≤ |supp(Y )|2`√p(2`− 1) by the Weil bound and

∆2 ≤
(
| supp(Y )|

2`

)
(2`) ≤ | supp(Y )|2`.

This implies that ∣∣∣∣∣∣∣∣
∑
x∼X
y∼Y

χ(x+ y)

∣∣∣∣∣∣∣∣ ≤
p

1
4`

|supp(X)|
1
2`

+
2
√
`p

1
2`

|supp(Y )|
1
2 |supp(X)|

`
2

Thus, we can set ` such that p
1
` = |supp(Y )|.
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