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In which we obtain pseudorandom generators for space-bounded computation, using constructions from Nisan
and Nisan-Zuckerman.

18.1 Recap: space-bounded computation

In the last lecture, we introduced the following complexity classes:

• DSPACE(S(n)): decision problems solvable by a Turing machine restricted to O(S(n)) space.

• BPSPACE(S(n)): decision problems solvable by a probabilistic Turing machine (with two-sided bounded
error) restricted to O(S(n)) space.

An important open problem is proving that BPSPACE(log n) ⊆ DSPACE(log n); i.e., derandomizing logspace-

bounded computation. Here, the current state-of-the-art is that BPSPACE(log n) ⊆ DSPACE(log3/2 n),
proven by Saks and Zhou [SZ99].

In order to derandomize a class BPSPACE(S(n)), it is often convenient to model a probabilistic Turing
machine as a family of objects called branching programs. An (R,w)-read once branching program (ROBP)
is an acyclic directed graph with R layers. Each layer consists of w nodes, and each node (in the first R− 1
layers) has an edge labeled 0 and an edge labeled 1 into nodes of the next layer. Each node in the last layer
is labeled accept or reject. Finally, there is a special start node (outside of all layers) with two edges labeled
0 and 1 into the first layer.

An (R,w)-ROBP can be interpreted as a function B : {0, 1}R → {0, 1} in the natural way: given an input
x ∈ {0, 1}R, initiate a walk from the start node and use the bits of x in succession to decide which outgoing
edge should be used to travel from the current node to a node in the following layer. After using all the
bits in x, the walk will be on a node v in the final layer, and B will output 1 if v is labeled accept, and 0
otherwise.

A probabilistic Turing machine M used to solve a decision problem in BPSPACE(S(n)) can be modeled by a
family of ROBPs: for each n ∈ N and x ∈ {0, 1}n, we may construct an (R ≤ 2O(S(n)), w ≤ 2O(S(n)))-ROBP
BM,x that simulates the probabilistic behavior of M on input x. Each node in BM,x corresponds to a state
of Mx(r) (the machine M with input x hardcoded in, acting on random input r). The transitions (edges)

in BM,x correspond to reading bits from the random string r ∈ {0, 1}2O(S(n))

. Note that we may bound the
length of r as such because otherwise M must hit a state twice and potentially loop forever, contradicting
the fact that M solves a problem in BPSPACE(S(n)).

Thus, in order to show BPSPACE(S) ⊆ DSPACE(T ), it suffices to construct a T -space-computable pseudo-

random generator (PRG) G : {0, 1}T → {0, 1}2S that ε-fools (2S , 2S)-ROBPs, for small ε, e.g., 1/10. That
is, for each such ROBP B, we must have |E[B(G(UT ))]−E[B(U2S )]| ≤ ε. Given a machine M that decides a
problem in BPSPACE(S), and an input x, we can then decide (deterministically) if x is a yes or no instance
by simply taking the majority output from Mx(G(z)) over all z ∈ {0, 1}T .

In the following two sections, we will derandomize two space-bounded complexity classes using the above
techniques with PRGs for ROBPs constructed by Nisan and Nisan-Zuckerman.
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18.2 Nisan’s PRG

In this section, we study the following classical pseudorandom generator of Nisan:

Theorem 18.1 ([Nis92]) For any R,w ∈ Z+, ε > 0, there exists an explicit PRG G : {0, 1}O((logR)(log(Rw/ε))) →
{0, 1}R that ε-fools (R,w)-ROBPs and that can be computed using space linear in the seed.

As per the discussion above, we can use a family of (R,w)-ROBPs, with R ≤ n,w ≤ n, to simulate any
machine deciding a problem in BPSPACE(log n). Without loss of generality, we can assume R = n,w = n.

Thus, observe that for a small fixed ε > 0, Theorem 18.1 gives the generator G : {0, 1}O(log2 n) → {0, 1}2logn

that ε-fools (n, n)-ROBPs, thereby showing BPSPACE(log n) ⊆ DSPACE(log2 n), using the discussion in the
previous section.

In the following two subsections, we prove Theorem 18.1 by constructing and analyzing G.

18.2.1 The construction

Nisan’s main realization was that since an ROBP has bounded width, if we examine the middle layer of the
ROBP, then for most nodes in that layer, the probability of hitting that node v on a random walk (dictated
by the input bits to the ROBP) is not too low. In other words, if such a random walk had length R/2,
then the uniform distribution UR/2 conditioned on arriving at node v should not have too much less entropy
than the pure uniform distribution UR/2. As such, without introducing too much error to the distribution
computed by the ROBP on purely uniform bits, we should be able to recycle the random bits that directed
us to node v in order to complete the random walk through the ROBP.

In order to recycle the random bits from the first half of the walk, Nisan uses a seeded extractor. Furthermore,
in order to minimize the total number of truly random bits needed to fool the ROBP, Nisan applies the above
idea recursively. We make all of this more precise, below.

Consider any R,w ∈ Z+, ε > 0. Now, for any l ∈ Z+, ε′ > 0 and sufficiently large d ∈ Z+, let

Extl : {0, 1}ld × {0, 1}d → {0, 1}ld

be a (ld− logw − log(1/ε′), ε′)-seeded extractor, and let

Gl : {0, 1}ld → {0, 1}2
l

be a pseudorandom generator defined recursively by:

Gl(z ◦ y) :=

{
y1 ◦ y2, l = 1

Gl−1(z) ◦Gl−1(Extl−1(z, y)), l > 1,

where z ∈ {0, 1}d(l−1), y ∈ {0, 1}d, and ◦ denotes concatenation. Note that by Theorem 6.22 in [Vad12],
there exists an explicit Extl for d = O(logw + log(1/ε′)).

In order to obtain PRG G referenced in Theorem 18.1 for parameters R,w, ε, we simply set G = Gl∗ with
l∗ = logR, and we set ε′ = ε/4l

∗
. We analyze this construction (i.e. the error produced by G) in the following

subsection.

18.2.2 The analysis

We now consider a branching program B of width w and bound the error of Nisan’s PRG. For a node v in
the branching program and an integer r ∈ Z+, it will be convenient to let Bv,r : {0, 1}r → [w] denote the
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sub-branching program that starts at node v and walks r steps. Furthermore, it will be convenient to let
Layv,r denote the nodes of the layer in the branching program reached by starting at node v and walking r
steps. The correctness of the construction immediately follows from the following claim, after plugging in
v = start and the parameters from the previous subsection.

Claim 18.2 Given a branching program B of width w, any node v in the branching program, and any integer
l ∈ Z+, we have:

|Bv,2l(U2l)−Bv,2l(Gl(Uld))| ≤ εl

where εl = 4l · ε′ and | · | denotes statistical distance, or half the `1 norm.

Proof: The proof is by induction on l, and by studying the following four hybrid distributions:

• D1 := U2l−1 ◦ U ′2l−1

• D2 := U2l−1 ◦Gl−1(U ′d(l−1))

• D3 := Gl−1(Ud(l−1)) ◦Gl−1(U ′d(l−1))

• D4 := Gl−1(Ud(l−1) ◦Gl−1(Ext(Ud(l−1), U
′
d))

Observe that D1 = U2l , and D4 = Gl(Udl). To show the claim, it therefore suffices to show that for each
Di, Di+1, where i ∈ [3], Bv,2l cannot distinguish between Di and Di+1. We proceed in showing each such
step:

• |Bv,2l(D1)−Bv,2l(D2)| = |
∑
u∈Lay

v,2l−1
p(u)·Bu,2l−1(U2l−1)−

∑
u∈Lay

v,2l−1
p(u)·Bu,2l−1(Gl−1(Ud(l−1)))|,

where we use a convex combination trick in that p(u) is defined as the probability distribution over the
vertices in Layv,2l−1 induced by Bv,2l−1(U2l−1). We may continue by pulling the sum and p(u) out of
the norm to obtain

∑
u∈Lay

v,2l−1
p(u)|Bu,2l−1(U2l−1)−Bu,2l−1(Gl−1(Ud(l−1)))| ≤ εl−1, by the induction

hypothesis and definition of a probability distribution.

• |Bv,2l(D2)−Bv,2l(D3)| ≤ εl−1, using the exact same idea as above.

• We use a slightly modified version of the above idea for bounding the error between the last two
distributions. We first define a set of nodes in Layv,2l−1 for which hitting such a node indicates that
much entropy was lost. In particular, we set Bad := {u ∈ Layv,2l−1 : p(u) ≤ ε′/w}, where p(u) is the
probability distribution on layer Layv,2l−1 induced by Gl−1(Ud(l−1)). We observe that for any u /∈ Bad,
H∞(Ud(l−1) | Bv,2l−1(Gl−1(Ud(l−1))) = u) ≥ d(l − 1) − logw − log(1/ε′). As such, our extractor will
succeed whenever a walk ends on such a node. In conclusion, we have: |Bv,2l(D3) − Bv,2l(D4)| =∑
u∈Lay

v,2l−1
p(u)|Bu,2l−1(Gl−1(U ′d(l−1))) − Bu,2l−1(Gl−1(Ext(Ud(l−1), U

′
d)))| ≤ ε′ +

∑
u∈Bad p(u) · 1 ≤

ε′ + w · (ε′/w) ≤ 2ε′.

Thus, we see that through the entire hybridization, our total error is εl ≤ 2εl−1 + 2ε′, a recurrence which
easily yields εl ≤ 4l · ε′.

18.3 The Nisan-Zuckerman PRG

In this section, we study the Nisan-Zuckerman PRG:
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Theorem 18.3 ([NZ96]) For any w ∈ Z+, R = polylog(w), and small 0 < γ < 1, there exists an ex-
plicit linear-space computable PRG G : {0, 1}O(R/(logw)γ) → {0, 1}R that ε-fools (R,w)-ROBPs for ε =

2−Ω((logw)1−γ/ log2 logw).

Given the construction we are about to present, it is not difficult to show that by composing a constant
number of these generators, we may produce a PRG G∗ : {0, 1}O(logw) → {0, 1}R that fools (R,w)-
ROBPs with small ε, as long as R = polylog(w). Notice that unlike Nisan’s generator, the final Nisan-
Zuckerman generator G∗ works in space O(logw) (instead of O(log2 w)), but only produces polylog(w) bits
instead of up to w bits. Thus, we see that if we define BPSPACE(log n, polylog(n)) as the problems in
BPSPACE(log n) that can be solved using at most polylog(n) random bits (i.e., polynomial in the space of
the machine), then the Nisan-Zuckerman PRG derandomizes this complexity class! That is, it shows that
BPSPACE(log n, polylog(n)) ⊆ DPSPACE(log n).

In the following two subsections, we prove Theorem 18.3 by constructing and analyzing G.

18.3.1 The construction

The Nisan-Zuckerman PRG uses the same idea of “bit-recycling” as Nisan’s generator, but it does not
generate a recursive tree. The construction is as follows: consider any w ∈ Z+, R = polylog(w), and small
0 < γ < 1. Now, for any n,m ∈ Z+, ε′ > 0 and sufficiently large d ∈ Z+, let

Ext : {0, 1}n × {0, 1}d → {0, 1}m

be a (n/2, ε′)-seeded extractor, and for any t ∈ Z+, let

Gt : {0, 1}n+td → {0, 1}tm

be a pseudorandom generator defined by:

Gt(x ◦ y1 ◦ · · · ◦ yt) = Ext(x, y1) ◦ · · · ◦ Ext(x, yt),

where x ∈ {0, 1}n, each yi ∈ {0, 1}d, and ◦ denotes concatenation. Note that by Theorem 6.36 in [Vad12],
there exists an explicit Ext as described above with d = O(log(n/ε′)).

In order to obtain the PRG G referenced in Theorem 18.3 for parameters R,w, γ, we simply set n =
4 logw, d = (logw)1−γ ,m = logw, and t = R/ logw.

We analyze this construction (i.e. the error produced by G) in the following subsection.

18.3.2 The analysis

Given a PRG Gt as defined in the previous subsection, let εt be its error and let ε′ be the error of the
extractors baked in. The correctness of the Nisan-Zuckerman construction immediately follows from the
following claim, after plugging in v = start and the parameters from the previous subsection.

Claim 18.4 Given a branching program B of width w, any node v in the branching program, and any integer
t ∈ Z+, we have:

|Bv,tm(Utm)−Bv,tm(Gt(Un+td))| ≤ εt,

where εt = t(ε′ + 1/w).
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Proof: The proof is by induction on t. We let q denote the distribution Bv,(t−1)m(Gt−1(Un+(t−1)d)), and let
p denote the probability distribution induced by Bv,(t−1)m(U(t−1)m). By the induction hypothesis, |p− q| ≤
(t − 1)(ε′ + 1/w). As with Nisan’s generator, we will define a set Bad := {u ∈ Layv,(t−1)m : p(u) ≤ 1/22m}.
Observe that for u /∈ Bad, H∞(Un+(t−1)d | Bv,(t−1)m(Gt−1(Un+(t−1)d))) ≥ n−2m. It is then straightforward
to decompose the distributions in the claim, apply the triangle inequality, and extract from the “good” nodes
in order to obtain the desired result.
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