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1 Spectral Expansion implies Vertex Expansion

We recall from last class that if p ∈ Rn is a distribution over vertices of a graph G = (V,E), where
V = [n], then the support of p is

sup(p) = {i ∈ [n] : p(i) > 0}. (1)

Moreover, we defined the Rényi entropy of a distribution p by

H2(p) = log

(
1

‖p‖22

)
= log

(
1∑n

i=1 p(i)
2

)
. (2)

From the homework, the quantity ‖p‖22 is the collision probability of p, which is the probability that
two random samples from p are equal. From last time, we know that

sup(p) ≥ 2H2(p). (3)

We will use these notions to prove that any spectral expander is also a vertex expander.

Theorem 1. Let G = (V,E) be a (n, d, α)-graph. For any β > 0, B ⊆ V with |B| = βn:

|N(B)| ≥ |B|
α2(1− β) + β

where α is the second-largest eigenvalue of Â.

Proof. Let pB be the uniform distribution on B ⊆ V , so that pB(v) = 1
|B| if v ∈ B and 0 otherwise.

Then note that ‖pB‖22 = 1
|B| and therefore,

H2(pB) = log(|B|). (4)

Now, let p = ÂpB, where Â is the normalized adjacency matrix of G. The normalized eigenvector
of Â is 1√

n
1, and we can compute 〈pB, 1√

n
1〉 = 1√

n

∑
v∈B

1
|B| = 1√

n
. Therefore, we can decompose

pB into orthogonal components

pB =
1√
n

(
1√
n

1

)
+ p⊥B = u+ p⊥B, (5)

where we define u := 1
n1 and note 〈u, p⊥B〉 = 0. Then

ÂpB = Â(u+ p⊥B) = Âu+ Âp⊥B = u+ Âp⊥B.
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Moreover, we note that 〈Âp⊥B, u〉 = 0 as well, because Â is invariant on the orthogonal complement
of u. In inner product notation, this follows because

〈Âp⊥B, u〉 = (p⊥B)T ÂTu = (p⊥B)T Âu = uT ÂT (p⊥B) = 〈Âu, p⊥B〉 = 〈u, p⊥B〉 = 0, (6)

where we use the fact Â is symmetric and the orthogonality from before. Therefore, by Pythagoras’
Theorem,

‖ÂpB‖22 = ‖u‖22 + ‖Âp⊥B‖22 (7)

We also have
‖pB‖22 = ‖u‖22 + ‖p⊥B‖22 (8)

Define γ := ‖p⊥B‖/‖pB‖. Combining equations (7) and (8), we derive

‖ÂpB‖22 = ‖pB‖22 − ‖p⊥B‖22 + ‖Âp⊥B‖22 (9)

≤ ‖pB‖22 − ‖p⊥B‖22 + α2‖p⊥B‖22 (10)

= ‖pB‖22(1− γ2 + α2γ2) (11)

= ‖pB‖22(1− γ2(1− α2)), (12)

where we use the fact that α is the second largest eigenvalue in the first inequality and p⊥B is a
weighted combination of the other eigenvectors. To conclude, we observe that ‖pB‖22 = 1

|B| = 1
βn ,

‖p⊥B‖22 = γ2

βn , ‖u‖22 = 1
n , and therefore from equation (8),

1

βn
=

1

n
+
γ2

βn
, (13)

and therefore, γ2 = 1− β. Then we have

H2(ÂpB) ≥ H2(pB)− log(1− (1− β)(1− α2)). (14)

As a result,

|sup(ÂpB)| ≥ 2H2(ÂpB)

≥ 2H2(pB)−log(1−(1−β)α2)

=
|B|

1− (1− β)(1− α2)
.

Rearranging 1− (1− β)(1− α2) = 1− (1− β − α2 + βα2) = α2(1− β) + β yields the theorem.

2 Random Walks on Expanders

We now show that expanders are highly connected in the sense that the probability that we stay
inside a subset while doing a random walk goes down exponentially in the number of steps.

Theorem 2. Let G = (V,E) be a (n, d, α)-graph. For any β > 0, B ⊆ V with |B| = βn:

Pr[EB,t] ≤ (β + α)t

where EB,t is defined to be the event that a random walk from a vertex randomly selected from V
is in B for all t steps of the random walk.
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Proof. Observe first that (Â)tij gives the probability that a random walk starting at i arrives at j
after t steps. Let MB be the n× n matrix with:

(MB)ij =

{
1 if i = j ∈ B
0 otherwise

In other words, MBv is the projection of v onto the elements of B. Observe that then v′ =
(MBÂMB)v, if ‖v‖1 = 1, is a vector representing the probabilities of selecting a vertex from B
according to the distribution corresponding to v, and taking a random edge from there to another
vertex in B. In particular, the value of v′j corresponds to the probability of such a walk ending at

j. It follows that (MBÂMB)tv is the equivalent probability for a random walk of length t whose
vertices are all contained in B. Then ‖(MBÂMB)u‖1 gives the sum over elements of B of the
probabilities that a random walk starting from a vertex chosen uniformly at random never leaves
B. More formally,

Pr[EB,t] = ‖(MBÂMB)tu‖1 (15)

We next demonstrate that, for any v ∈ Rn with nonnegative coordinates,

‖(MBÂMB)u‖2 ≤ (α+ β)‖v‖2 (16)

To this end, we can write decompose v into orthogonal components v = 〈v, û〉û+v⊥, where û = 1√
n
1

is the `2-normalized eigenvector (for now, we write u′ = 〈v, û〉û). Without loss of generality, we
may assume that v is supported on B, that is, MBv = v. If this is not the case, then ‖MBv‖i ≤ ‖v‖i
for i = 1, 2, and the bound we show will still be valid. If MBv = v, we have:

MbÂv = MBÂu
′ +MBÂv

⊥

Since u′ is a scalar multiple of 1 and Â1 = 1:

MbÂv = MBu
′ +MBÂv

⊥

‖MbÂv‖2 ≤ ‖MBu
′‖2 + ‖MBÂv

⊥‖2 (17)

Now consider each component separately:

‖MBu
′‖2 =

√∑
i∈B

(u′i)
2

=

√√√√∑
i∈B

(
〈v, û〉√
n

)2

Note that 〈v, û〉 =
n∑
i=1

vi√
n

= ‖v‖1√
n

. Additionally, |B| = nβ:

=

√
nβ
‖v‖21
n2

=

√
β

n
‖v‖1 (18)
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We can use Cauchy-Schwarz and the fact that v is supported on B to obtain:

‖v‖1 =
n∑
i=1

|vi|

=
∑
i∈B
|vi| · 1 +

∑
i/∈B

0 (since vi = 0 for i /∈ B)

= 〈v,MB1〉
≤ ‖v‖2 · ‖MB1‖2 (Cauchy-Schwarz)

= ‖v‖2 ·

(∑
i∈B

12

)1/2

‖v‖1 ≤ ‖v‖2
√
βn (19)

From (18) and (19), we have:

‖MBu
′‖2 =

√
β

n
‖v‖1 ≤

√
β

n

√
βn‖v‖2 = β‖v‖2 (20)

The ‖MBÂv
⊥‖2 term is simpler. Since MBv is a projection of v onto a subset of its components,

‖MBv‖2 ≤ ‖v‖ for any v. In particular:

‖MBÂv
⊥‖2 ≤ ‖Âv⊥‖2 ≤ α‖v⊥‖2 ≤ α‖v‖2 (21)

The second inequality is justified in the same way as (10), as α is the second-largest eigenvalue of
Â; the last inequality follows from the fact that v⊥ is a projection of v. Now combining (17), (20),
and (21), we obtain:

‖MbÂv‖2 ≤ ‖MBu
′‖2 + ‖MBÂv

⊥‖2 ≤ (α+ β)‖v‖2 (22)

Note that we may inductively apply (22) and the fact that ‖MBv‖2 ≤ ‖v‖2, as MB is a projection,
to obtain the general result:

‖(MbÂMb)
tv‖2 ≤ (α+ β)t‖v‖2 (23)

In particular, we have, using (15):

Pr[EB,t] = ‖(MBÂMB)tu‖1
≤
√
n‖(MBÂMB)tu‖2

=
√
n(α+ β)t‖u‖2 (From (23))

= (α+ β)t

Observation 2.1. This theorem has applications for one-sided error reduction. For instance,
suppose L ∈ RP via a randomized algorithm A(x, r), where x ∈ {0, 1}n is the input and r ∈ {0, 1}k
is the random bit string. If x ∈ L, then A(x, r) = 1 for all r, and if x /∈ L, then the probability
that A(x, r) = 1 is at most β < 1; that is, at most β fraction of random strings will give the wrong
answer. To drive down error, take a spectral expander G = ({0, 1}k, E) be a (2k, d, α)-spectral
expander. By letting B be the set of “bad” witnesses of an x /∈ L, take a random walk of length t as
specified in the theorem and get strings r1, . . . , rt. We then compute A(x, ri) for each i and output 1
if each computation was 1. By the previous theorem, the probability this procedure mislabels x /∈ L
is less than (β + α)t, which goes down exponentially fast for small enough β and α.

Moreover, this construction requires k+t log d random bits to sample the first vertex uniformly
and log d to take a step in the walk.
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3 Randomness Extractors

In general, natural sources of randomness are often defective. When we use randomness for various
applications in randomized algorithms, cryptography, distributed computing, or other settings, we
may require purely random bits. Our next problem will be to determine how to model a defective
source and a way to extract pure randomness from it.

One early such model, due to von Neumann, is as follows:

1. Model the defective source as a stream of independent p-biased bits x1, . . . , xi, . . . such that
the xi’s are i.i.d. and Pr[xi = 1] = p,Pr[xi = 0] = 1− p.

2. Extract randomness by maintaining a bit which stores the value of
i⊕

k=1

xk.

To see how this works, we note that we can model the parity after i bits using some ideas from
Markov chains. Define

A =

(
1− p p
p 1− p

)
. (24)

The states are even and odd, respectively, and the transitions are just that the parity remains the
same with probability 1 − p and changes with probability p. It is easy enough to show that the

probabilities that
i⊕

k=1

xk = 0 and 1 respectively are given by the vector Aie1, where e1 is the vector

(1, 0)T .
By the Perron-Frobenius Theorem, any ergodic Markov chain has a unique stationary distribu-

tion π with eigenvalue 1, and moreover, for any distribution q on states, limi→∞A
iq = π. Here,

ergodicity just corresponds to p 6= 0 or 1. It is easy to compute that the eigenvalues are 1 and
1 − 2p, and the largest eigenvalue corresponds to the uniform distribution u and the latter is
v = (1/2,−1/2) using orthogonality by the Spectral Theorem, as A is conveniently also symmetric.
Note that we can write e1 = u + v and then Aie1 = u + (1 − 2p)iv. As a result, we see that the

coefficient of the second term can be made less than ε in absolute value in log(1/ε)
log(1/|1−2p|) steps. For

fixed p, this is just O(log(1/ε)) steps, and the constant gets better as p→ 1/2.
Another way to extract randomness is to take two bits at a time and output 0 if we see the

pair 01 first and 1 if we see 10 first (in the case of 11 or 00, we just try again). These events are
equally probable with probability p(1 − p) each, and it can be shown that the expected number
of pairs needed before seeing one or the other is 1

2p(1−p) . It’s not too hard to get high probability
statements using Chernoff bounds.

Definition 3.1. Let D be a distribution on {0, 1}n. Define the min-entropy of D to be:

H∞(D) = min
x∈sup(D)

(− log(Pr[D = x])) = min
x∈sup(D)

(
log

1

Pr[D = x]

)
Intuitively, the larger H∞(D) is, the less probably any particular outcome can be. We can

formalize this as follows:

Example 3.2. For any distribution D, H∞(D) ≥ k =⇒ ∀x,Pr[D = x] ≤ 2−k.

Proof. Let x ∈ {0, 1}n. By definition, − log(Pr[D = x]) ≥ k. This gives:

log(Pr[D = x]) ≤ −k
2log(Pr[D=x]) ≤ 2−k

Pr[D = x] ≤ 2−k
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Definition 3.3. An (n, k)-source is a distribution on n bits with min-entropy at least k.

Our goal will be to create extractors which produce random bits using (n, k)-sources. We may
attempt to define such an extractor as follows:

(Tentative) Definition 3.4. An extractor is a function Ext : {0, 1}n → {0, 1} such that, for
any (n, k)-source X, 0.49 ≤ Pr[Ext(X) = 1] ≤ 0.51.

However, it turns out that this definition will not be sufficient for our purposes. In fact, we will
show that no such extractor can exist for k = n− 1; note that if k = n, then our source is already
random (by Example 3.2, the probability of any outcome will be exactly 2−n).

Claim 3.5. There is no extractor satisfying (Tentative) Definition 3.4 with k = n− 1.

Proof. By contradiction. Suppose that such an extractor Ext : {0, 1}n → {0, 1} existed. But
|Ext−1(0)| + |Ext−1(1)| = 2n, so one of these two sets must contain at least half of the elements.
Assume without loss of generality that it is Ext−1(0); we then have:

|Ext−1(0)| ≥ 2n−1

Consider the distribution X which is uniform on Ext−1(0) and 0 elsewhere. Note that since the
maximum probability of any outcome is 2−|Ext

−1(0)| ≤ 2−(n−1), we have H∞(X) ≥ n − 1. But by
definition, we have Ext(X) = 0, so Pr[Ext(X) = 1] < 0.49, contradicting the assumption that Ext
was an (n, k)-extractor.
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