
CS 6810: Theory of Computing Spring 2026

Lecture 3: Hierarchy Theorems

Lecturer: Eshan Chattopadhyay Scribe: Matthew Cowan

1 Overview

The hierarchy theorems formalize the intuition that:

“Given more computational resources, we can solve more problems.”

The main technique used to prove these results is diagonalization, and in some cases lazy
diagonalization. In later lectures, we will show the failure of diagonalization techniques to solve
questions like P = NP, introducing the idea of barrier results which show what kinds of proof
techniques are strong enough (or not strong enough) to separate complexity classes. Future lectures
will also extend some of these ideas to Oracle Turing Machines. In all of the following proofs and
definitions, we consider Turing Machines that compute functions of the form f : {0, 1}∗ → {0, 1}.

2 Deterministic Time Hierarchy Theorem

Theorem 2.1 (Deterministic Time Hierarchy). Let f, g : N → N be time-constructible functions
such that

f(n) log f(n) = o(g(n)).

Then,
DTIME(f(n)) (DTIME(g(n)).

Why the log f(n) Overhead? (and other questions)

The logarithmic overhead arises because we will need to simulate machines on a universal Turing
machine, incurring a logarithmic overhead (which is more efficient than the quadratic overhead
needed we saw in lecture 1). Moreover, if you’re wondering what time-constructible means, its
definition will follow but it is a necessary assumption for a TM to be able to run exactly n steps of
simulation when it’s simulating another TM. Lastly, a reminder of “little-oh” notation. When we
say f(n) log(n) = o(g(n)), we mean that for any ε, there exists an N such that for all n ≥ N

f(n) log f(n)

g(n)
< ε,

or in other words,

lim
n→∞

f(n) log f(n)

g(n)
= 0.

Note that the first definition of little-oh captures its asymptotic nature which we will have to
account for in the proof.

1

Lecture 3: Hierarchy Theorems 2

Proof

We define a diagonalizing machine D.

D on input x:

1. Let n = |x|.

2. Simulate the machine Mx (the machine encoded by x) on input x for g(n) steps using a
universal TM.

3. If Mx halts during this simulation, output the opposite of its answer.

4. Otherwise, reject.

This defines a language L = L(D). By construction, L ∈ DTIME(g(n)).

Claim 2.2. L /∈ DTIME(f(n)).

Proof. Suppose there exists a machine M ′ running in time O(f(n)) such that L(M ′) = L(D) = L.
Let y be the bitstring describing M ′, i.e. 〈M ′〉 = y. Let k := |y|.

Consider running D on input y:

• D simulates M ′y(y) for g(k) steps.

• We claim that M ′ halts during this simulation, due to the assumption f log f = o(g), but
this requires a slight refinement in how we construct M ′. Here, k is a fixed integer, but it
is possible that k < N , where N is the same as in the little-oh definition above. Therefore,
instead of letting M ′ be any TM deciding L, let it be one with more states such that its
encoding, y, is long enough such that g(n) grows strictly faster than f(n) log f(n). We can
think of this as adding lots and lots of comments to a C program until its executable has
increased significantly in size. With this in mind, it follows that the time to run f on the
UTM satisfies C · f(k) · log(k) < g(k), and therefore the simulation halts.

Thus D(y) outputs the opposite of M ′(y), implying

D(y) 6= M ′(y),

a contradiction.

3 Time-Constructible Functions

Definition 3.1. A function f(n) is time-constructible if:

1. On input 1n, a Turing machine outputs 1f(n) in O(f(n)) time.

2. f(n) is non-decreasing.

3. f(n) ≥ n.

Time constructibility ensures we can allocate exactly f(n) steps in a simulation, which is re-
quired in the diagonalization proof. Moreover, most “reasonable” functions we encounter when
constructing algorithms are time constructible.

Lecture 3: Hierarchy Theorems 3

4 Nondeterministic Time Hierarchy Theorem

Theorem 4.1 (Nondeterministic Time Hierarchy). Let f(n) and g(n) be time-constructible func-
tions such that

f(n) = o(g(n)).

Then,
NTIME(f(n)) (NTIME(g(n)).

Issue with Naive Diagonalization(and other remarks)

If we attempt to negate the output of a nondeterministic TM directly, as we did in our first
diagonalization proof, the method fails because nondeterministic machines accept if any branch
accepts. Negating a single branch does not invert the overall computation. Another thing worth
noting is that in theorem statement there is nothing requiring logarithmic overhead as in the
deterministic case. In this proof, like the first one, we will have to simulate a NTM on a universal
Machine, but it is a well known result (which will not be proved here) that if you have a NTM
running in time T(n), then there exists a Universal Non Deterministic TM that can simulate it in
time O(T(n)).

Lazy Diagonalization Approach

The following proof of the non deterministic time hierarchy is a more recent one attributed to Fort-
now and Santhanam. To see an alternative proof, please consult the Arora and Barak textbook on
page 67.

We construct a machine D that takes two inputs (x, y), with n := |x|+ |y|.

D(x, y):

1. If |y| < g(|x|):

• Nondeterministically simulate Mx on two inputs: (x, y0) and (x, y1) for g(n) steps.

• Accept iff Mx accepts both branches. (NOTE: This can be easily checked by guessing a
certificate for both inputs, check if it’s satisfied for each of them, and accept if it is.)

2. If |y| ≥ g(|x|):

• Simulate Mx on the empty string using y as the nondeterministic choice.

• Stop after g(n) steps.

• If Mx halts, output the opposite answer.

• Otherwise, reject.

This construction ensures that

L(D) ∈ NTIME(g(n)).

Lecture 3: Hierarchy Theorems 4

Contradiction Argument

Suppose there exists an NTM N ′ running in C · f(n) time such that

L(N ′) = L(D).

Let x′ be a sufficiently large bitstring encoding of N ′. Let L := L(D) and let ε denote the
empty string. Then,

(x′, ε) ∈ L ⇐⇒ N ′ accepts (x′, 0), (x′, 1).

This is because in Case 1 of D, (x′, ε) ∈ L if and only if N ′ accepts (x′, 0) and (x′, 1). Since
N ′ decides L, this means (x′, 0), (x′, 1) are also in L. Moreover, since it is always the case that
|ε| < g(|x′|), we fall into Case 1 of D, and are valid in applying this logic.

Iterating this reasoning,

(x′, ε) ∈ L ⇐⇒ (x′, 0), (x′, 1) ∈ L

⇐⇒ (x′, 00), (x′, 01), (x′, 10), (x′, 11) ∈ L

...

⇐⇒ (x′, y) ∈ L where |y| = g(|x′|).

Thus, we fall into the second case of D, occurring when |y| ≥ g(|x′|), and by the same diagonal
argument as in the proof for deterministic machines, D returns the opposite output, a contradiction.

Therefore,
NTIME(f(n)) (NTIME(g(n)).

5 Remarks

• The deterministic proof requires a log f(n) overhead due to universal simulation.

• The nondeterministic proof uses lazy diagonalization to handle branching behavior.

• The same proof ideas extend to space complexity, where the log overhead is not needed.

