
CS 6810: Theory of Computing Spring 2026

Lecture 2: January 22, 2026

Lecturer: Nicholas Spooner Scribe: Thomas McFarland

1 Introduction

Last lecture we covered Turing machines (TM), a theoretical model of computing which forms the
foundational system of computational theory. Such a machine take an input x and (may) give an
output in a number of steps, thus it is convention to use function notation, that is if a machine M
outputs y when fed x, we say M(x) = y

Definition 1.1. DTIME(T(n)) is the set of all languages L ⊆ {0, 1}∗ s.t. there exists a turing
machine M that for all x ∈ {0, 1}∗ runs in timea O(T (|x|)) and M(x) = 1 ⇐⇒ x ∈ L

aTime here referring to the number of steps the TM takes to reach a final state on a given input

The final condition in that definition says that M “decides” L. This is equivalent to determining
if x is in a language L ⊆ {0, 1}∗ or it’s complement L. Thus, the above definition can be rephrased
as the set of all languages that are decided in time O(T (n)). Most of the problems in this course fall
under decision problems, that is cases where a turing machine outputs either 1 or 0 deterministically
for a given input x.

Definition 1.2.
P =

⋃
DTIME(T (n))

for all polynomial T (n)

Generally when we speak of “efficient computation” in complexity theory, we are speaking of
languages in P.

Conjecture 1.3 (Church-Turing Conjecture for P). Given that all theoretical models of effi-
cient computation of functions over the natural numbers vary by only a polynomial factor of
steps, the class P is the same regardless of the model used to define it.

In essence the above means that, no matter how one tries to define complexity or complexity
classes, the broad strokes of the resulting theories remain the same.

2 Beyond class P

If P is “efficient computation”, NP is the class where the answer can be “efficiently verified” as
correct.

1

https://www.cs.cornell.edu/people/nicholas-spooner

Lecture 2: January 22, 2026 2

Definition 2.1. A language L is in NP if there is a polynomial p(x) and V, a polynomial
time TMa s.t. ∀x ∈ {0, 1}∗, x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) ∧ V (x, u) = 1

aCalled a verifier

We can say this colloquially as NP consists of all elements in the language have a “certificate”
which can be verified in polynomial time.

Open problem 2.2 (NP vs. Co-NP). For P it is known that the complement of any
language L in P is also in P. For NP this is not believed to be universally true.

2.1 Another Definition of NP

While the above definition offers, the most intuitive picture of the class NP, the acronym itself
comes from its alternate, historical definition via a Nondeterministic Turing Machine (NDTM).

Definition 2.3 (Nondeterministic Turing Machine). A Turing Machine with two transition
functions (commonly called δ0 and δ1) is called a Nondeterministic Turing Machine.

Figure 1: The computation tree for a deterministic vs. a
nondeterministic turing machine

For a NDTM, at each step the tur-
ing machine can “use” either transition
function. An output is accepted if any
combination of steps from the two transi-
tion functions reaches an accepting state.
That is, for NDTM M , M(x) = 1 if
there exists a leaf in the tree of compu-
tations (see 1) choosing δ0 or δ1 in state
qaccept

1. The negation of this means that
M(x) = 0 if and only if there is no path
to an accept path in the computation
tree. We time bound an NDTM via the
max length of any path the machine can
take on a given input.

We also define NTIME similarly to
DTIME, such that a language L is in

NTIME(T(n)) if there exists NDTM M running in time O(T (n)) s.t. ∀xM(x) = 1 iff x ∈ L.

Claim 2.4.
NP =

⋃
NTIME(T (n))

for all polynomial T (n)

1Generally there may be multiple accepting states, but for simplicity we consider a NDTM with just one qaccept

Lecture 2: January 22, 2026 3

We prove both directions of this, starting with a language L in NTIME(nc). Since this language
is in NTIME(nc), we know the language can be decided in at most O(nc) steps of a NDTM. We
take as a certificate for a given x ∈ L the choices between δ0 and δ1 for a path that leads to accept.
Then we run the NDTM deterministically as a verifier using that as a map. Since we are running
it deterministically, and we know this path is of polynomial order length, we can instead run of a
normal Turing Machine. Thus we have a polynomial time verifier, and have proven this language
is in NP.

For the reverse direction, that is starting with a L ∈ NP, given the certificate length p(|x|), we
can enumerate every possible certificate with an NDTM then run the verifier. The runtime of this
is O(p(|x|) + q(|x|)), where the latter is the runtime bound of the verifier, which is a polynomial.
Thus this language is in polynomial NTIME and the claim has been proven.

2.2 Some NP Problems

It turns out there are a lot of problems in NP, of varying level of individual complexity. A table
of a few enlightening examples are listed below:

Problem Name Definition / Decision Question Certificate

INDSET Given a graph G and integer k, does G con-
tain an independent set of size k?

A set I ⊂ V (G) with
|I| = k

Traveling Sales-
man (TSP)

Given a graph with edge distances and a bud-
get k, is there a path visiting each vertex
with total distance ≤ k?

The sequence of vertices
(the path)

Graph Isomor-
phism

Given graphs G1 and G2, is there a bijec-
tion Π (that is, a relabelling) between their
vertices such that Π(G1) = G2?

The permuta-
tion/bijection Π

Composite Given an integer N , is it composite (i.e., not
prime)?

Two integers a, b > 1
such that N = a× b

Connectivity Given a graph G and vertices s, t, is there a
path from s to t?

The sequence of edges
(or vertices) forming a
path from s to t

All of these are in NP, however their complexity varies. Connectivity and composite2 are in
P. TSP is in NP, but more than that is NP-Complete (see section 3.1). Graph isomorphism
is unproven and its proper location in this hierarchy is unknown, but based on some intermediate
results it is probably not NP Complete3.

3 Hierarchy of Computability

Definition 3.1.
EXP =

⋃
DTIME(2n

c
)

2While it is know that the composite decision problem, whether or not a number is composite, is in P, whether
finding a and b is in P is still unknown.

3Interestingly this problem falls under a class of what is suspected to form NP-Intermediate problems, that is
problems that are not in P nor are NP-Complete. It is a known result that NP-Intermediate problems exists if
and only if P ̸= NP

Lecture 2: January 22, 2026 4

for all c ≥ 1

With these definitions in mind, we can make something of a intuitive claim.

Claim 3.2.
P ⊂ NP ⊂ EXP

We first show that NP ⊆ EXP. Starting with language L ∈ NP and an input x to decide on,
enumerate all possible certificates (certificate length given by p(|x|))

We check the verifier for each, showing that this algorithm decides L. Enumeration and check
is 2p(|x|)(1 + q(|x|)) ∈ O(2n

c
), where again q(n) is the runtime bound of the verifier. Thus this

algorithm decides L and is in EXP, proving the statement.
We also know all problems in P is in NP since the verifier can just be its turing machine and

the certicate the input (i.e. u = x).
Every other part of that claim is unproven! We don’t know NP ̸= EXP and don’t know

P ̸= NP 4

Open problem 3.3 (Complexity Hierarchy). Is there a hierarchy in the complexity classes
P, NP, and EXP, or are two of the three classes equivalent.

3.1 Reducibility and NP-Completeness

While we can’t say P = NP or P ̸= NP but we can define relationships between many problems
in either, via reducibility.

Definition 3.4 (Polytime Reducibility). A language L is polytime reducible to language L′

(Notation L ≤p L′) if there exists a polytime computable function f : {0, 1}∗ → {0, 1}∗ (called
a reduction) s.t. ∀x, x ∈ L ⇐⇒ f(x) ∈ L′

Intuitively, we can view this as a map from L to L′ and from Lc to L′c

Claim 3.5.
L′ ∈ P ∧ L ≤p L′ =⇒ L ∈ P

To prove, take input x ∈ L, compute f(x), then computeM ′(x) for turing machine which decides L′.
Then this is polytime (as its runtime is O(pM ′(|x|) + pf (|x|))). Given the definition of reducibility,
this process is a turing machine which decides L

This is very helpful for when it is hard to solve L but easy to find f .

Definition 3.6 (NP-Hardness). A language L is NP-Hard if for all L′ in NP, L′ ≤p L.

4The time hierarchy theorem does however show that P ⊊ EXP

Lecture 2: January 22, 2026 5

If L is NP-Hard and in NP we call it NP-Complete. Intuitively, we would say this definition
defines a class of the “hardest problems in NP”.

There are some immediate consequences and theorems from these definition, which will be
useful.

1. If L ≤p L′ and L′ ≤p L′′ then L ≤p L′′ (transitivity)5

2. If L is NP-Hard and L ∈ P then P = NP.

3. if L is NP-Complete then L ∈ P ⇐⇒ P = NP

3.2 Does NP-C exist

Reasonably, one may ask whether there even exists NP-Complete problems. There are indeed
many, but a good (if heavy handed) example to this problem is TMSAT.

Definition 3.7. TMSAT is a decision problem which asks, given a tuple with a description
of a turing machine α, an input string x, a certificate length n, and a time limita t, is there
a certificate u of length n s.t. Mα on (x, u) accepts within the given time limit.

aBoth the certificate length and time limit are represented by n 1s

Claim 3.8. TMSAT is NP-Complete

TMSAT is clearly in NP, the certificate is u. For the reduction for language L ∈ NP, let V be
its verifier, q(n) be its runtime bound, and p(n) its certificate length bound. Our reduction maps
x to (V, x, 1p(|x|), 1q(|x|)+p(|x|)). Then, by definition of NP, TMSAT accepts x if and only if x ∈ L.
Thus, NP-Complete is not an empty class.

5This can be trivially proven by composing the two reductions together.

	Introduction
	Beyond class P
	Another Definition of NP
	Some NP Problems

	Hierarchy of Computability
	Reducibility and NP-Completeness
	Does NP-C exist

