CS 6810: Theory of Computing Spring 2026

Lecture 1: January 20, 2026

Lecturer: Mohit Gurumukhani Scribe: Annabel Baniak

1 Course Information

Welcome to CS 6810! Please consult the Course Website for information about the Syllabus, con-
tent and grading scheme.

Most of the course communication will take place through the EdStem Discussion Board.

As described on the course website, each student will have to act as scribe for at least one lec-
ture throughout the course, counting for 25% of your grade. To sign up for a lecture, please fill out
your name by a date in the google sheet.

The recommended textbooks for the course are:

e Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak. You
can find a draft of the book here.

e Computational Complexity: A Conceptual Perspective by Oded Goldreich. You can find a
draft of the book here.

e Mathematics and Computation by Avi Wigderson. You can find a draft of the book here.

2 Theory of Computing

Let’s start with the question, what is computing, and why do we care?

At the most basic level, we're interested in to do tasks and how many resources it takes to do
these tasks.

Example: Factoring Integers. A simple task we might be interested in would be to factor
integers. Assume we get an input of a 1000 digit non-prime integer, and our goal is to get back the
factors of this integer. What are the exact amount of resources required to solve this problem?

The current state of the art way of solving this problem has a time complexity of 10° years (a
million years) in order to solve this for any random input.

However, this is only the runtime of the best known algorithm we currently have. Theoretically,
someone could invent a different way of completing the problem tomorrow that solves it in an aver-
age of 1 second. As much of the the internet is built using cryptographic security measures relying
on the difficulty of this problem, that would obviously demand a major change in technical security.

It would be nice to have some formal bound specifying that, with any implementation of any

https://courses.cs.cornell.edu/cs6810/2026sp/
https://edstem.org
https://docs.google.com/spreadsheets/d/17gzBtph3FnVohKGmX1Mc-x9yZeRcEbF9-jSbAyyujG8/edit?gid=0#gid=0
https://theory.cs.princeton.edu/complexity/book.pdf
https://www.wisdom.weizmann.ac.il/~oded/cc-drafts.html
https://www.math.ias.edu/files/Book-online-Aug0619.pdf#page=1

Lecture 1: January 20, 2026 2

algorithm, discovered or not discovered, this problem or any other must take a certain amount of
time to complete.

In this course, we are interested in these theoretical guarantees about the resources a task must use
to be completed, rather than evaluating the performance of a particular algorithmic implementa-
tion.

Example: Multiplying Matrices Another problem we may be interested in is that of multi-
plying matrices. Assume as input we receive A, an n X n matrix, and B, another n X n matrix.
Our goal is to output A - B.

There are many different algorithms that can be used to solve this problem. A naive approach
results in O(n?) time complexity. Strassen’s algorithm gives a slightly better bound of O(n?8!).
The current state of the art gives a bound of O(n?3™).

By analyzing the problem, we know that the true lower bound for any algorithm solving this
problem cannot be less than O(n?). But is the current state of the art bound the best we can
practically hope for, or is there theoretical evidence to suggest a faster algorithm is possible? As
matrix multiplication is commonly used in ML programs and can result in a bottleneck or at least
very resource intensive step for many ML applications, the question as to whether the current
bound can be beat would have significant real-world implications.

Resource Tradeoffs The resources we consider in this course include more than just time com-
plexity. Other resources include space complexity (space in physical memory), and how much
randomness an implementation to solve a problem must rely on. When considering various dif-
ferent resources like this, it’s important to consider how they compare against each other. This
includes asking questions like, can randomness help speed up computation? Are there space-time
tradeoffs?

Consider the question: Which is better (has greater computational capacity),
1. An algorithm running in time R with no space restrictions, or

2. an algorithm running in space R%%! with no time restrictions?

A recent argument from Williams ‘25 proves that algorithm number 2 is more powerful. In the
paper, Williams argues that any algorithm which runs in time R (with no space restrictions) can
equivalently be run in space VR (with no time restrictions). Thus, the algorithm running with
space R%?! with no time restrictions allows for strictly greater computational complexity than the
algorithm running with time R with no space restrictions.

Formalization of Computation To analyze questions like this, we want to formalize our notion
of computation, and what we mean by a computational task.

Let’s represent any computational task by a function £:{0,1}* — {0,1} over the binary alpha-
bet, giving a yes/no answer. Equivalently, we can represent f : X* — 3* over any finite alphabet.

For any such function f, we want a theoretical model of a computer we can reason about to
make formal guarantees about f. To do this, we use...

https://arxiv.org/abs/2502.17779

Lecture 1: January 20, 2026 3

3 Turing Machines

Turing Machines (1936) are pencil-and-paper models that capture natural computation and are
used to calculate these formal guarantees. Independently, Church and Godel also made natural
models of computation around the same time, but they’re equivalent to Turing’s model:

Church-Turing Hypothesis. Any other powerful natural model of computation is equivalent
to a Turing machine.

Intuition. The idea behind a Turing Machine is a formal model of how a human solves a prob-
lem: You work with a potentially infinite amount of paper/scratchpad in front of you, and proceed
working through the problem using finite set of rules in your brain.

Similarly, a Turing Machine is made up of tapes, representing the infinite amount of scratchpad
space, and tape heads which move along the tapes according to a finite set of rules. Our model of
a TM takes an input tape with the input string, and maintains k worktapes as well as an output
tape. A finite state module maintains the current position of the tape heads on the tapes, and a
finite transition model records the finite set of rules used to move the tape heads:

Input Tape|> | b]lblalalal|DID

J

Reading/Writing Head % Finite Transitions

(moves in both directions)

Work Tape 1| > | DID|D| D DDD\

41&_//%

Work Tape k| > | D|D|D|D|D|D|D q2 /

q1 qo

Output Tape

!Turing Machine LaTeX diagrams adapted from Sebastian Sardina.

Finite States

https://texample.net/turing-machine-2/

Lecture 1: January 20, 2026 4

Formal Definition of a TM. We define a TM (Turing Machine) formally as the tuple (Q, X, T, J),
where:

e () is a state set, where a state represents some information about the current position of the
machine, for example a ‘start state’ or ‘copying state’. () must contain at least one ‘halt
state’ wherein the machine stops its process.

e Y is the Input Alphabet and Output Alphabet

e ['is the Tape Alphabet, where ¥ C I', and there exist the symbols D € I" representing blank
positions on the tape and > € I' representing the start position of the tapes, as they are only
infinite in one direction.

e J is the transition function taking one state of the machine and moves the tape heads to form
a new state, where 6 : Q@ x L2 x I'" — Q x & x I'* x {L, S, R}*+2

The type signature for § specifies that at each step, the transition function takes in the current
state and the characters currently read from the 2 input/output tapes, as well as the characters
read from the k worktapes. As output, it gives a new state, generated by first overwriting the
current position on the output tape with an element of ¥, and overwriting the current position on
the k worktapes with elements from I', and then moving each of the (k + 2) tape heads in one of
three directions: move Left, move Right, or Stay the same.

Now we can reason about the time a TM takes to process a computing problem, by counting
how many steps the machine takes to reach a halt state.

Finite Encodings. Note that this formal definition gives a finite encoding of any Turing Ma-
chine, where each element of the tuple is represented using a finite binary encoding. So, any TM
can be described by a finite binary string.

Similarly, the opposite direction also holds; any finite binary string can be associated to
a TM which represents it. If the string follows the correct way of encoding a TM, let it encode
that machine, and otherwise, let the string be associated to the TM which always halts and outputs
0.

This allows TMs the capacity to encode anything that can be encoded by a finite binary string,
for example any program written in a high-level programming language like python. All programs
written in high-level programming languages can be compiled into binary to get a finite file, which
can then be encoded into a Turing Machine.

4 Example 1 - Palindromes

Consider the function f:{0,1}* — {0,1} which takes a binary string = € {0,1}*, and returns 1 if
x is a palindrome and 0 otherwise. For example, input word f(0110) would return 1 but f(0111)
would return 0.

We can model this computational task using a Turing Machine. Create a TM M with 2 work-
tapes, and given the input string x as the contents of the input tape. Then M can perform the
task using the following:

Lecture 1: January 20, 2026 5

1. Copy over the entire input tape to the first worktape, stopping when the tape head on the
input tape reaches the blank symbols.

Input Tape| > lab]lb]lblblal|lD

Work Tapel|v |la|b|blDIDIDI|D

Work Tape 2| > | D|D|D|D|D|D|D

@p

Output Tape | > | D|D|D|D|D|D]|D

2. Copy over the entire input tape to the second worktape, but reversed. As from step 1, the
input tape head was left at the first blank symbol, it is in the perfect position to copy over
the contents of the input tape backwards.

Input Tape|>] a|b]lblb]lblalb

Work Tapel|>|la]lb|lb]lb]lblalD

Work Tape 2| la|b|blDIDIDI|D

Output Tape | > | D|D|D|D|D|D|D

3. Compare the contents of worktape 1 and worktape 2, moving from right to left (as both tape
heads on both worktapes are now at the end of the non-blank symbols in their word) until you
reach the start symbol . If you reach > without any elements of the worktapes disagreeing,
then put 1 into the output tape, else put 0.

Lecture 1: January 20, 2026 6

Input Tape|>] a|b]lblb]lblalb

“@p

Work Tape 1| la|lb|Dblb

b
Work Tape 2|>|la]lb|lb]lblblalD

<]

Output Tape | > | D|D|D|D|D|D]|D

@

This process occurs with O(n +n +n) = O(n) steps. However, if we were restricted to a TM
with only 1 tape, where the single tape operates as input tape, worktape, and output tape, this
process would take O(n?) time. But it would still be possible if we only had a TM with one tape.

5 Multi-tape and Single Tape Equivalence

More worktapes do not guarantee more power in Turing Machines. In fact, every action that can
be performed with a multi-tape TM can also be performed with a single tape TM.

Theorem 1. Vk-tape TMs M, 3 a TM M’ with only one worktape such that M and M’ compute
the same function.

However, while the computational complexity between M and M’ are equal, the time they take to
execute a computational task is not. If M takes time k X T'(n) time to execute a task, then M’ will
take k x (T'(n))? time to execute the task.

Proof. Given a TM M with k worktapes, we will create an M’ with only one worktape.

Let the worktape of M’ be split into sections representing the k worktapes of M, to infinity,
so that the ith position on the worktape of M’ represents the (i mod k)th worktape of M. The
character filling this 7th position of the worktape of M’ represents the current character being read
from the (¢ mod k)th worktape of M.

However, as there are thus infinitely representations of each worktape of M present in M’, we
need a way of signifying which is the ’current’ representation of the tapes of M. So, let I, the tape
alphabet of M’, be equal to I" = {a,a | a € T'}, for I the tape alphabet from M.

Now, the one ‘hat character’ present in the worktape of M’ for each index class mod k repre-
sents the true current character at the head of the ¢ mod kth worktape from M.

Lecture 1: January 20, 2026 7

For example, if we were translating a TM M with three worktapes, our worktape in M’ may
look like:
M' worktape|>|aljplcldlblalc

w@p

Here, assuming the start symbol > is at index 0, the indices 1, 4, 7, etc represent the first
worktape from M, but only index 4 represents the current character at the head of worktape 1 - d,
as it is the only ‘hat’ character.

To simulate each step of M in M’,

e We scan the worktape of M’ to find these ‘hat’ characters to extract the current information
of M, and store this as M’s state.

e Then, we can use the transition function § from M to calculate the next moves to perform
in M’

e Finally, we apply these changes to the worktape of M’ from right to left.

Note that one step of M took O(n) steps in M’. So if it took T'(n) total steps to run the program
on M, it takes (T(n))? steps to run it on M.

Theorem 2. Instead of using an arbitrary tape alphabet I', we can simulate any TM with the
minimal alphabet I' = {0, 1, D,>}.

We leave the proof as exercise for the reader, as after representing the elements of I' in binary
encoding, the process is similar as the process for Theorem 1.

Together, Theorems 1 and 2 support the Church-Turing hypothesis, which argues that any machine
modeling computability can be converted into a Turing Machine.

6 Universal Turing Machine

Recalling the definition of encoded TMs, we can now discuss the Universal Turing Machine,
U. This TM takes as input the binary encoding of some TM, (M), and a binary string x. U then
outputs M(x) (M run with x as input).

The real power of the Universal TM is that U has finite description but can run any TM on
any string.

Implementing the Universal TM. Given input strings (M) and x, first transform M to have
1 worktape and tape alphabet {0, 1, D, >}, using the processes discussed in the above section.

Now given this, we can assume that M operates with one worktape and only with tape alpha-
bet {0,1, D,>}. Let U have an input tape, three worktapes, and an output tape.

e On worktape one, copy over the binary encoding of the transition function of M.

e Worktape two will work to simulate the current state of M in U.

Lecture 1: January 20, 2026 8

e Worktape three will serve as the single worktape from M.

Now we can simulate M one step at a time, using the rules from the transition function provided
in worktape 1 to update worktapes 2 and 3 (the state and worktape of M) with each step.

Input Tape|(> 0] 111}]J010]010

Transition Functionof M| > 1010|011 }|11]1

Current Stateof M| >] 01 O0] 11001 17]0O0

Work Tape from M|> 01111111 DIDI|D

Output Tape|> | D|D|D|D|D|D|D

“@p

Note that the number of tapes, the tape alphabet, and the number of states of U is independent
of those qualities in M.

If M takes time T'(n), then U should take time T'(n)? (naive) to simulate it, but T'(n)log(T(n))
time with a ‘clever’ implementation.

7 Can TMs compute all functions?

All this about the power of Turing Machines begs the question: Are TMs Computationally complex
enough to compute all possible functions? Given an arbitrary f : {0,1}* — {0, 1}, does there exist
an TM M which computes {7

The answer is unfortunately no.

Theorem 3. TMs cannot compute all possible functions.

Note that the number of functions is uncountable; there are 2V functions of the type {0,1}* —
{0,1}. However, we showed earlier that there is a bijection between the set of TMs and the set of
finite binary strings, which is a countable set, of size N. By Cantor’s diagonalization proof, there
cannot exist a bijection between all functions and all TMs, and there must be some functions that
cannot be captured by a TM.

Lecture 1: January 20, 2026 9

U.C. Toillustrate this, we can define a new function, U.C. which represents this diagonalizational
argument. Let U.C. take as input the binary string a.

e We know o must associate to some TM, M,, so let U.C. call M, on input string «.
o If this call halts in a finite number of steps, and M, («) = 1, then let U.C. output 0.
e Otherwise, let U.C. output 1.

Now we can claim that No TM can ever compute U.C..

Proof. Suppose such a TM M existed that exactly computes U.C..

Let o =(M) be the binary string encoding of M, and consider M(x), or in other words, the
encoding of M fed in as the input string to M itself.

o If M(z) = 1, then M((M)) = 1. Consider U.C.(z). By the definition of U.C., U.C. takes
the TM associated with input string z, which in this case is exactly M, and if M(x) = 1,
U.C. returns 0. So U.C.(z) = 0.

e If M(z) =0, then M((M)) = 0. Consider U.C.(z). By the definition of U.C., U.C. takes
the TM associated with input string z, which in this case is exactly M, and if M (x) = 0,
then U.C. is in the ”otherwise” case and returns 1. So U.C.(x) = 1.

Thus, in both cases, this presents a contradiction, as we assumed at the start that M exactly
computed U.C., but they in fact always differ on the input string x = (M).

Therefore, no TM exists that can encode U.C.

However, this is a bit of a strangely constructed function. It would be nice to have a function
which cannot be modeled by a TM with a more natural construction...

8 Halting Problem

...which we find in the Halting Problem.

Halting Problem Let’s define the function HALT as follows: For any input binary strings «, x,
HALT (e, z) = 1 iff M, (x) halts in finite time, where M, is the TM encoded by the string c.

Theorem 4. HALT is incomputable, and cannot be represented by any TM.

Proof. Suppose for contradiction that a TM My computes HALT.

Then we can construct a TM My . which takes in an arbitrary binary string a € {0, 1}*, and
define My ¢ such that:

e My c. calls U, the Universal TM, to simulate Mg on the input string a.

e If this simulation does not halt, then My (a) = 0, so let My ¢, output 1.

Lecture 1: January 20, 2026 10

e Otherwise, if the simulation of My on « does halt, we let My ¢. output the negation of the
universal call, NOT U(M,, «).

Now, notice that My ¢ takes in an arbitrary binary string a € {0, 1}* and outputs the exact defi-
nition of U.C. from above. Thus, My ¢ exactly computes U.C..

However, we have already showed that this isn’t possible, so we reach a contradiction.

We have reduced the U.C. problem to the Halting problem and thus have shown that if we could
compute HALT, then we could compute U.C.. By contrapositive, we know that since we can’t
compute U.C., then we can’t compute HALT.

This proof structure is called a reduction. When reducing algorithm B to algorithm A, if we
can solve A, we can solve B. Therefore, by contrapositive, if we know B is not solvable by our cur-
rent knowledge, then we know A is not solvable by our current knowledge either. If we encounter a
new problem A in the wild, we can reduce to it from a problem we already know we cannot solve,
B, to show that A is not solvable either.

	Course Information
	Theory of Computing
	Turing Machines
	Example 1 - Palindromes
	Multi-tape and Single Tape Equivalence
	Universal Turing Machine
	Can TMs compute all functions?
	Halting Problem

