
CS 6810: Theory of Computing Fall 2023

Lecture 9: Sept 19, 2023

Lecturer: Eshan Chattopadhyay Scribe: Thomas Cui

1 PSPACE completeness

Definition 1.1. True quantified Boolean formula (TQBF) is the problem of determining the truth
value of Q1x1, Q2x2, . . . , Qnxn, ϕ(x1, x2, . . . , xn), where Q1, . . . , Qn are quantifiers (∀ or ∃), x1, . . . , xn
are variables, and ϕ is a Boolean formula.

Theorem 1.2. TQBF is PSPACE-complete.

Proof. First notice a TM can brute force TQBF and reuse space for each trial, so TQBF ∈
PSPACE.

Now we want to show ∀L ∈ PSAPCE, L ≤p TQBF . We consider the following polynomial
time reduction:

Let M be a TM that computes L in S(n) space and x be an input to M . We know x ∈ L if and
only if there exists a path from vstart to vaccept in the configuration graph GM,x. Note that there
can be at most 2cS(n) nodes in GM,x for some constant c. Denote q = cS(n).

We define ϕi(A,B) to be 1 if there exists a path from A to B of length at most 2i in GM,x and
0 otherwise. Then ϕq(vstart, vaccept) is the final formula we want (since GM,x has at most 2q nodes).
A crucial observation is that there is path of length at most 2i from A to B if and only if there
exists a configuration C ∈ V (GM,x) such that there are paths each of length at most 2i−1 from A
to C and from C to B, so ϕi(A,B) = ∃C, (ϕi−1(A,C) ∧ ϕi−1(C,B)).

However, the recursion resulted from the above formula is T (i) = 2T (i− 1) + O(S(n)). When
we unroll the recursion, we would have T (q) = 2O(S(n)), which is not polynomial space.

To fix this issue, we introduce additional quantified variables and rewrite ϕi as follows

ϕi(A,B) = ∃C,∀D,∀E, ((A = D ∨ C = E) ∧ (C = D ∨B = E)) =⇒ ϕi−1(D,E)

Therefore, our recursion becomes T (i) = T (i− 1)+O(S(n)) =⇒ T (q) = poly(S(n)), and we have
proved L ≤p TQBF .

2 Boolean Circuits

Now we switch topic to study Boolean circuits, which is a non-uniform model of computation/

Definition 2.1. A Boolean circuit is a directed acyclic graph with 3 types of nodes:

1. Input nodes (fan-in), which have in-degree 0.

2. Output nodes (fan-out), which have out-degree 0.

3. Logical gates (∧,∨,¬), which are all other nodes.

Definition 2.2. There are 2 complexity measures for Boolean circuits:

1. Size: the number of edges (wires) in the circuit.

1

Lecture 9: Sept 19, 2023 2

2. Depth: the length of the longest path from an input node to an output node.

Given a Boolean circuit C with n input nodes, it naturally computes a Boolean function f :
{0, 1}n → {0, 1} (assuming 1 output node). To make circuits be able to compute languages (and
take inputs of any length), we purpose the following definition.

Definition 2.3. C := {Cn}n∈N is an S(n)-sized circuit family if ∀Cn ∈ C, |Cn| ≤ S(n). We say C
computes a language L if ∀n ∈ N, ∀x ∈ {0, 1}n, Cn(x) = Ln(x), where Ln = L ∩ {0, 1}n

Definition 2.4. Define the complexity class SIZE(S(n)) such that a language is said to be in
SIZE(S(n)) if there exists an S(n)-sized circuit family computing it.

Definition 2.5. We say a language L is in P/poly if there exists a circuit family C computing L.
Then P/poly =

⋃
c≥1 SIZE(nc)

It is worth mentioning the following claims, where Claim 2.6 is known, and Claim 2.7 is
widely believed to be true.

Claim 2.6. P ⊆ P/poly.

Claim 2.7. NP ̸⊆ P/poly.

Also notice that Claim 2.7 is equivalent to the following claim.

Claim 2.8. There is no polynomial sized circuit family that computes SAT .

The complexity class P/poly in fact contains undecidable problems. Here is an example.

Definition 2.9. A unary language is a subset of {1n|n ≥ 0}.

Claim 2.10. (Unary-)HALT is in P/poly.

To prove this claim, we prove a more general claim.

Claim 2.11. Every unary language is in P/poly.

Proof. We prove by constructing a polynomial sized circuit family that computes a unary language
L. Let k be an arbitrary input length.

• If 1k ∈ L, set Ck = x1 ∧ . . . ∧ xk.

• If 1k ̸∈ L, set Ck = 0.

Obviously, this circuit family is polynomial sized, and it computes L.

2.1 Circuit lower/upper bounds

Theorem 2.12 (Lower bound). ∃c,∀n ≥ n0, ∃fn : {0, 1}n → {0, 1} such that no circuit of size 2n

cn
can compute fn.

Proof. We prove by a counting argument: we will show that there are more such fn’s than circuits
of size 2n

cn .
First notice that |fn| = 22

n
, i.e. there are 22

n
such functions.

We now look at the number of circuits of size ≤ S. By definition, there are at most S wires
in the circuit, so each wire can be encoded as a bit string of length 2 logS, so a circuit can be

Lecture 9: Sept 19, 2023 3

represented in c′S logS bits for some constant c′, implying there are at most 2c
′S logS = Sc′′S many

circuits.
Pick c = 2c′′. Plugging in S = 2n

cn , we have

Sc′′S =

(
2n

cn

)c′′ 2
n

cn

=
22

n−1

(cn)c′′S

Which is much less than 22
n
for large enough n, so there must be some fn that cannot be computed

by a circuit of size at most 2n

cn .

In fact we can get something stronger: appropriately setting c, it can be shown that a random
function requires circuits of size ≥ 2n/cn with probability 1− o(1).

Theorem 2.13 (Upper bound). ∃c′ such that any fn : {0, 1}n → {0, 1} can be computed by a
circuit of size 2n

c′n .

Proof. We provide a start of the proof here.
We can create the truth table of fn and look at the DNFs (disjunctive normal forms) of fn.

Anding the variables in each DNF (can be done in O(n2n) wires) and ORing the results (can be
done in O(2n) wires) gives a circuit of size O(n2n).

We defer the proof of the theorem to next lecture.

	PSPACE completeness
	Boolean Circuits
	Circuit lower/upper bounds

