## CS 6810: Theory of Computing

Fall 2023
Lecture 9: Sept 19, 2023
Lecturer: Eshan Chattopadhyay
Scribe: Thomas Cui

## 1 PSPACE completeness

Definition 1.1. True quantified Boolean formula (TQBF) is the problem of determining the truth value of $Q_{1} x_{1}, Q_{2} x_{2}, \ldots, Q_{n} x_{n}, \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $Q_{1}, \ldots, Q_{n}$ are quantifiers $(\forall$ or $\exists), x_{1}, \ldots, x_{n}$ are variables, and $\phi$ is a Boolean formula.

Theorem 1.2. TQBF is PSPACE-complete.
Proof. First notice a TM can brute force $T Q B F$ and reuse space for each trial, so $T Q B F \in$ PSPACE.

Now we want to show $\forall L \in P S A P C E, L \leq_{p} T Q B F$. We consider the following polynomial time reduction:

Let $M$ be a TM that computes $L$ in $S(n)$ space and $x$ be an input to $M$. We know $x \in L$ if and only if there exists a path from $v_{\text {start }}$ to $v_{\text {accept }}$ in the configuration graph $G_{M, x}$. Note that there can be at most $2^{c S(n)}$ nodes in $G_{M, x}$ for some constant $c$. Denote $q=c S(n)$.

We define $\phi_{i}(A, B)$ to be 1 if there exists a path from A to B of length at most $2^{i}$ in $G_{M, x}$ and 0 otherwise. Then $\phi_{q}\left(v_{\text {start }}, v_{\text {accept }}\right)$ is the final formula we want (since $G_{M, x}$ has at most $2^{q}$ nodes). A crucial observation is that there is path of length at most $2^{i}$ from $A$ to $B$ if and only if there exists a configuration $C \in V\left(G_{M, x}\right)$ such that there are paths each of length at most $2^{i-1}$ from $A$ to $C$ and from $C$ to $B$, so $\phi_{i}(A, B)=\exists C,\left(\phi_{i-1}(A, C) \wedge \phi_{i-1}(C, B)\right)$.

However, the recursion resulted from the above formula is $T(i)=2 T(i-1)+O(S(n))$. When we unroll the recursion, we would have $T(q)=2^{O(S(n))}$, which is not polynomial space.

To fix this issue, we introduce additional quantified variables and rewrite $\phi_{i}$ as follows

$$
\phi_{i}(A, B)=\exists C, \forall D, \forall E,((A=D \vee C=E) \wedge(C=D \vee B=E)) \Longrightarrow \phi_{i-1}(D, E)
$$

Therefore, our recursion becomes $T(i)=T(i-1)+O(S(n)) \Longrightarrow T(q)=\operatorname{poly}(S(n))$, and we have proved $L \leq_{p} T Q B F$.

## 2 Boolean Circuits

Now we switch topic to study Boolean circuits, which is a non-uniform model of computation/
Definition 2.1. A Boolean circuit is a directed acyclic graph with 3 types of nodes:

1. Input nodes (fan-in), which have in-degree 0.
2. Output nodes (fan-out), which have out-degree 0 .
3. Logical gates $(\wedge, \vee, \neg)$, which are all other nodes.

Definition 2.2. There are 2 complexity measures for Boolean circuits:

1. Size: the number of edges (wires) in the circuit.
2. Depth: the length of the longest path from an input node to an output node.

Given a Boolean circuit $C$ with $n$ input nodes, it naturally computes a Boolean function $f$ : $\{0,1\}^{n} \rightarrow\{0,1\}$ (assuming 1 output node). To make circuits be able to compute languages (and take inputs of any length), we purpose the following definition.

Definition 2.3. $\mathcal{C}:=\left\{C_{n}\right\}_{n \in \mathbb{N}}$ is an $S(n)$-sized circuit family if $\forall C_{n} \in \mathcal{C},\left|C_{n}\right| \leq S(n)$. We say $\mathcal{C}$ computes a language $L$ if $\forall n \in \mathbb{N}, \forall x \in\{0,1\}^{n}, C_{n}(x)=L_{n}(x)$, where $L_{n}=L \cap\{0,1\}^{n}$

Definition 2.4. Define the complexity class $S I Z E(S(n))$ such that a language is said to be in $S I Z E(S(n))$ if there exists an $S(n)$-sized circuit family computing it.

Definition 2.5. We say a language $L$ is in $P /$ poly if there exists a circuit family $\mathcal{C}$ computing $L$. Then $P /$ poly $=\bigcup_{c \geq 1} S I Z E\left(n^{c}\right)$

It is worth mentioning the following claims, where Claim 2.6 is known, and Claim 2.7 is widely believed to be true.

Claim 2.6. $P \subseteq P /$ poly .
Claim 2.7. $N P \nsubseteq P /$ poly .
Also notice that Claim 2.7 is equivalent to the following claim.
Claim 2.8. There is no polynomial sized circuit family that computes $S A T$.
The complexity class $P /$ poly in fact contains undecidable problems. Here is an example.
Definition 2.9. A unary language is a subset of $\left\{1^{n} \mid n \geq 0\right\}$.
Claim 2.10. (Unary-)H ALT is in $P /$ poly.
To prove this claim, we prove a more general claim.
Claim 2.11. Every unary language is in $P /$ poly.
Proof. We prove by constructing a polynomial sized circuit family that computes a unary language $L$. Let $k$ be an arbitrary input length.

- If $1^{k} \in L$, set $C_{k}=x_{1} \wedge \ldots \wedge x_{k}$.
- If $1^{k} \notin L$, set $C_{k}=0$.

Obviously, this circuit family is polynomial sized, and it computes $L$.

### 2.1 Circuit lower/upper bounds

Theorem 2.12 (Lower bound). $\exists c, \forall n \geq n_{0}, \exists f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ such that no circuit of size $\frac{2^{n}}{c n}$ can compute $f_{n}$.

Proof. We prove by a counting argument: we will show that there are more such $f_{n}$ 's than circuits of size $\frac{2^{n}}{c n}$.

First notice that $\left|f_{n}\right|=2^{2^{n}}$, i.e. there are $2^{2^{n}}$ such functions.
We now look at the number of circuits of size $\leq S$. By definition, there are at most $S$ wires in the circuit, so each wire can be encoded as a bit string of length $2 \log S$, so a circuit can be
represented in $c^{\prime} S \log S$ bits for some constant $c^{\prime}$, implying there are at most $2^{c^{\prime} S \log S}=S^{c^{\prime \prime} S}$ many circuits.

Pick $c=2 c^{\prime \prime}$. Plugging in $S=\frac{2^{n}}{c n}$, we have

$$
\begin{aligned}
S^{c^{\prime \prime} S} & =\left(\frac{2^{n}}{c n}\right)^{c^{\prime \prime} \frac{2^{n}}{c n}} \\
& =\frac{2^{2^{n-1}}}{(c n)^{c^{\prime \prime} S}}
\end{aligned}
$$

Which is much less than $2^{2^{n}}$ for large enough $n$, so there must be some $f_{n}$ that cannot be computed by a circuit of size at most $\frac{2^{n}}{c n}$.

In fact we can get something stronger: appropriately setting $c$, it can be shown that a random function requires circuits of size $\geq 2^{n} / c n$ with probability $1-o(1)$.

Theorem 2.13 (Upper bound). $\exists c^{\prime}$ such that any $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed by $a$ circuit of size $\frac{2^{n}}{c^{\prime} n}$.

Proof. We provide a start of the proof here.
We can create the truth table of $f_{n}$ and look at the DNFs (disjunctive normal forms) of $f_{n}$. Anding the variables in each DNF (can be done in $O\left(n 2^{n}\right)$ wires) and ORing the results (can be done in $O\left(2^{n}\right)$ wires) gives a circuit of size $O\left(n 2^{n}\right)$.

We defer the proof of the theorem to next lecture.

