
CS 6810: Theory of Computing Fall 2023

Lecture 8: September 14, 2023

Lecturer: Eshan Chattopadhyay Scribe: Omkar Bhalerao

1 NL = coNL

In the previous lecture, we introduced the following theorem:

Theorem 1.1 (Immerman, Szelepscensyi). NL = coNL.

We continue by proving this theorem. To do so, we first define the language PATH:

Definition 1.2. PATH = {⟨G, s, t⟩ : there is no s-t path in digraph G = (V,E)}.

We now outline our proof statement along with some corollaries.

Theorem 1.3. There exists an O(log n) space nondeterministic algorithm for PATH.

Corollary 1.4. NL = coNL.

Corollary 1.5. For all “nice” S(n) > log n, NSPACE(S(n)) = coNSPACE(S(n)).

As an aside, note that one implication of Corollary 1.5 is that NPSPACE = coNPSPACE; how-
ever, we have already shown this, since we know that NPSPACE = PSPACE and that PSPACE is
closed under its complement. In addition, we contrast this theorem to Savitch’s theorem from the
previous lecture: that NSPACE(S(n)) ⊆ DSPACE(S(n)2). In other words, there’s no overhead when
going from NSPACE to coNSPACE, unlike when going from NSPACE to DSPACE.

To begin the proof, we have the following definition:

Definition 1.6. Ci = {v ∈ V : there exists a path of length at most i from s to v}.

As such, PATH is equivalent to asking whether t /∈ Cn.

Claim 1.7. There exists an O(log n) nondeterministic algorithm that can decide [v ∈ Ci] for all i.

The proof of this is similar to the proof given in the previous lecture for deciding PATH, but
we will outline it below:

Proof. We will describe such an algorithm below:
On the work tape, have a section representing a counter, a section representing the current

guess, and a section representing the next guess. Begin by writing s to the current guess section.
Then, at each iteration, nondeterministically choose a neighbor u of s, write it to the next guess
section, and increment the counter. Then, write the next guess to the current guess section, and
repeat. If we see node v at any point in this process, accept; otherwise, after the counter reaches
i, reject.

Since at most O(log n) bits are needed to store the counter and the labels of all the nodes, this
algorithm indeed only uses O(log n) space.

1

Lecture 8: September 14, 2023 2

Claim 1.8. Given |Ci−1| = r, there exists a nondeterministic O(log n) space algorithm that can
decide [v /∈ Ci] for all i.

Proof. We describe such an algorithm below:
First, our NDTM will nondeterministically guess a set T ⊆ V such that |T | = r. Then, the

machine will use claim 1 on all nodes in its guess to check whether it is correct. Though in general
representing the set T could take space larger than O(log n), it’s possible to sequentially go through
each element of T to ensure that no more than O(log n) space in total is used. Once a correct guess
T is found, our NDTM will simply sequentially go through all the nodes in T and check if v is
connected to each of the nodes. If v is connected to any one of the nodes, our algorithm will reject.
Otherwise, it will accept.

Claim 1.9. Given |Ci−1| = ri−1, there exists a nondeterministic O(log n) space algorithm that
either rejects, or outputs the correct size of Ci, and the said output happens for at least one execution
path.

Proof. Again, we describe an algorithm.
For every node in the neighbors of Ci−1, our algorithm will nondeterministically guess whether

v ∈ Ci or v /∈ Ci, and then verifies those guesses using Claim 1 and Claim 2. It will also maintain
a counter that starts at ri−1. If the algorithm makes a correct guess, then either 1 or 0 is added
to the counter. Since the Claim 1 and Claim 2 algorithms are guaranteed to be correct for at least
one path of execution, it’s therefore the case that there’s at least one path of execution for which
the Claim 3 algorithm is also correct. In addition, we will use the same sequential strategies as
previously to ensure that no more than O(log n) total space is used.

Now that we have these three claims, our overall algorithm to solve PATH is as follows: first,
we set |c0| = 1. From this, we compute |c1|, . . . , |cn| sequentially using Claim 3 (implicitly using
Claims 1 and 2 in the process). Lastly, we answer [t /∈ Cn] using Claim 2. Thus, we’ve shown that
PATH ∈ NL and thus that NL = coNL.

2 PSPACE-completeness

We now switch topics to PSPACE-completeness.

Definition 2.1 (PSPACE-completeness). A language L is PSPACE-complete if L ∈ PSPACE and
for all L′ ∈ PSPACE, L′ ≤P L, where ≤P means that L′ is polynomial-time Karp reducible to L.

To aid us in talking about PSPACE-completeness, we will now introduce a canonical language
to represent PSPACE:

Definition 2.2 (True Quantified Boolean Formulas (TQBF)). TQBF is the language of true quan-
tified Boolean formulas; in other words, formulas of the following form that evaluate to true:

Q1x1Q2x2 . . . Qnxnϕ(x1, x2, . . . , xn)

where each Qi is a quantifier (i.e. ∀ or ∃), and ϕ is a Boolean formula of variables x1, . . . , xn.

We will show that TQBF is indeed PSPACE-complete.

Claim 2.3. TQBF ∈ PSPACE.

Lecture 8: September 14, 2023 3

Proof. We describe a polynomial-space algorithm for deciding TQBF.
First, our TM will brute-force over all variable assignments. It iterates over all quantifiers in the

process, and in doing so, will ensure that for all ∀-quantified variables, both assignments result in
a true formula, and for all ∃-quantified variables, at least one assignment results in a true formula.
If this is true for all variables, our TM accepts; otherwise, it rejects.

This TM uses polynomial space because space can be reused across the different recursive calls.
This is captured in the following recurrence, where n is the number of quantifiers, m is the size of
the formula ϕ, and S(n,m) is the space complexity at that level:

S(n,m) = S(n− 1,m) +O(poly(n,m))

Again, since we reuse space across each recursive call, this recurrence is correct. Thus, the total
space complexity used is still O(poly(n,m)), proving that TQBF ∈ PSPACE.

Claim 2.4. For all L ∈ PSPACE, L ≤P TQBF.

Proof. For the sake of time, we omit the full proof; this will be given in the next lecture. We will,
however, go through the setup steps for it.

First, note that if L ∈ PSPACE, then there exists a TM M that uses cnc space for some constant
c and computes L. We will denote cnc by S(n) from here on out.

We define GM,x to be the configuration graph of M on input x. Then, by definition, x ∈ L iff
there exists a path from cstart to caccept in GM,x, where cstart is the starting configuration and caccept
is the accepting configuration (WLOG assume that there’s exactly one accepting configuration).

We now define a formula ϕi(A,B) = 1 for two configurations A,B if there exists a path from
A to B in GM,x of length at most 2i. Precisely, we take the Boolean variables that encode the
configuration state of A and B and define a formula for which the above fact is true. Let ℓ be the
total number of variables in A and B; then, the formula is one on 2ℓ variables, where ℓ ∈ O(S(n))
by definition.

Clearly, we have that ϕ0(A,B) = 1 iff (A,B) ∈ E(GM,x), where E(G) represents the edge set
of the graph G. As such, ϕ0 can be encoded by the transition function of M . In the more general
case where i ̸= 0, we can simply write ϕi(A,B) = (∃C.ϕi−1(A,C) ∧ ϕi−1(C,B)). However, we’re
not quite done yet, because the formula ϕi(A,B) could be potentially exponentially sized in A and
B. There is, however, a trick to ensure that ϕi(A,B) is polynomially sized, and we will cover that
in the next lecture.

	NL = coNL
	PSPACE-completeness

