Lecture 8: September 14, 2023
Lecturer: Eshan Chattopadhyay
Scribe: Omkar Bhalerao

## $1 \mathrm{NL}=\mathrm{coNL}$

In the previous lecture, we introduced the following theorem:
Theorem 1.1 (Immerman, Szelepscensyi). NL = coNL.
We continue by proving this theorem. To do so, we first define the language $\overline{\mathrm{PATH}}$ :
Definition 1.2. $\overline{\mathrm{PATH}}=\{\langle G, s, t\rangle$ : there is no s-t path in digraph $G=(V, E)\}$.
We now outline our proof statement along with some corollaries.
Theorem 1.3. There exists an $O(\log n)$ space nondeterministic algorithm for $\overline{\mathrm{PATH}}$.
Corollary 1.4. NL $=$ coNL.
Corollary 1.5. For all "nice" $S(n)>\log n$, $\operatorname{NSPACE}(S(n))=\operatorname{coNSPACE}(S(n))$.
As an aside, note that one implication of Corollary 1.5 is that NPSPACE $=$ coNPSPACE; however, we have already shown this, since we know that NPSPACE $=$ PSPACE and that PSPACE is closed under its complement. In addition, we contrast this theorem to Savitch's theorem from the previous lecture: that $\operatorname{NSPACE}(S(n)) \subseteq \operatorname{DSPACE}\left(S(n)^{2}\right)$. In other words, there's no overhead when going from NSPACE to coNSPACE, unlike when going from NSPACE to DSPACE.

To begin the proof, we have the following definition:
Definition 1.6. $C_{i}=\{v \in V$ : there exists a path of length at most $i$ from $s$ to $v\}$.
As such, $\overline{\text { PATH }}$ is equivalent to asking whether $t \notin C_{n}$.
Claim 1.7. There exists an $O(\log n)$ nondeterministic algorithm that can decide $\left[v \in C_{i}\right]$ for all $i$.
The proof of this is similar to the proof given in the previous lecture for deciding PATH, but we will outline it below:

Proof. We will describe such an algorithm below:
On the work tape, have a section representing a counter, a section representing the current guess, and a section representing the next guess. Begin by writing $s$ to the current guess section. Then, at each iteration, nondeterministically choose a neighbor $u$ of $s$, write it to the next guess section, and increment the counter. Then, write the next guess to the current guess section, and repeat. If we see node $v$ at any point in this process, accept; otherwise, after the counter reaches $i$, reject.

Since at most $O(\log n)$ bits are needed to store the counter and the labels of all the nodes, this algorithm indeed only uses $O(\log n)$ space.

Claim 1.8. Given $\left|C_{i-1}\right|=r$, there exists a nondeterministic $O(\log n)$ space algorithm that can decide $\left[v \notin C_{i}\right]$ for all $i$.

Proof. We describe such an algorithm below:
First, our NDTM will nondeterministically guess a set $T \subseteq V$ such that $|T|=r$. Then, the machine will use claim 1 on all nodes in its guess to check whether it is correct. Though in general representing the set $T$ could take space larger than $O(\log n)$, it's possible to sequentially go through each element of $T$ to ensure that no more than $O(\log n)$ space in total is used. Once a correct guess $T$ is found, our NDTM will simply sequentially go through all the nodes in $T$ and check if $v$ is connected to each of the nodes. If $v$ is connected to any one of the nodes, our algorithm will reject. Otherwise, it will accept.

Claim 1.9. Given $\left|C_{i-1}\right|=r_{i-1}$, there exists a nondeterministic $O(\log n)$ space algorithm that either rejects, or outputs the correct size of $C_{i}$, and the said output happens for at least one execution path.

Proof. Again, we describe an algorithm.
For every node in the neighbors of $C_{i-1}$, our algorithm will nondeterministically guess whether $v \in C_{i}$ or $v \notin C_{i}$, and then verifies those guesses using Claim 1 and Claim 2. It will also maintain a counter that starts at $r_{i-1}$. If the algorithm makes a correct guess, then either 1 or 0 is added to the counter. Since the Claim 1 and Claim 2 algorithms are guaranteed to be correct for at least one path of execution, it's therefore the case that there's at least one path of execution for which the Claim 3 algorithm is also correct. In addition, we will use the same sequential strategies as previously to ensure that no more than $O(\log n)$ total space is used.

Now that we have these three claims, our overall algorithm to solve PATH is as follows: first, we set $\left|c_{0}\right|=1$. From this, we compute $\left|c_{1}\right|, \ldots,\left|c_{n}\right|$ sequentially using Claim 3 (implicitly using Claims 1 and 2 in the process). Lastly, we answer $\left[t \notin C_{n}\right]$ using Claim 2. Thus, we've shown that $\overline{\mathrm{PATH}} \in \mathrm{NL}$ and thus that $\mathrm{NL}=\mathrm{coNL}$.

## 2 PSPACE-completeness

We now switch topics to PSPACE-completeness.
Definition 2.1 (PSPACE-completeness). A language $L$ is PSPACE-complete if $L \in$ PSPACE and for all $L^{\prime} \in \operatorname{PSPACE}, L^{\prime} \leq_{P} L$, where $\leq_{P}$ means that $L^{\prime}$ is polynomial-time Karp reducible to $L$.

To aid us in talking about PSPACE-completeness, we will now introduce a canonical language to represent PSPACE:

Definition 2.2 (True Quantified Boolean Formulas (TQBF)). TQBF is the language of true quantified Boolean formulas; in other words, formulas of the following form that evaluate to true:

$$
Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where each $Q_{i}$ is a quantifier (i.e. $\forall$ or $\exists$ ), and $\phi$ is a Boolean formula of variables $x_{1}, \ldots, x_{n}$.
We will show that TQBF is indeed PSPACE-complete.
Claim 2.3. TQBF $\in$ PSPACE.

Proof. We describe a polynomial-space algorithm for deciding TQBF.
First, our TM will brute-force over all variable assignments. It iterates over all quantifiers in the process, and in doing so, will ensure that for all $\forall$-quantified variables, both assignments result in a true formula, and for all $\exists$-quantified variables, at least one assignment results in a true formula. If this is true for all variables, our TM accepts; otherwise, it rejects.

This TM uses polynomial space because space can be reused across the different recursive calls. This is captured in the following recurrence, where $n$ is the number of quantifiers, $m$ is the size of the formula $\phi$, and $S(n, m)$ is the space complexity at that level:

$$
S(n, m)=S(n-1, m)+O(\operatorname{poly}(n, m))
$$

Again, since we reuse space across each recursive call, this recurrence is correct. Thus, the total space complexity used is still $O($ poly $(n, m))$, proving that TQBF $\in$ PSPACE.

Claim 2.4. For all $L \in \mathrm{PSPACE}, L \leq_{P}$ TQBF.
Proof. For the sake of time, we omit the full proof; this will be given in the next lecture. We will, however, go through the setup steps for it.

First, note that if $L \in$ PSPACE, then there exists a TM $M$ that uses $c n^{c}$ space for some constant $c$ and computes $L$. We will denote $c n^{c}$ by $S(n)$ from here on out.

We define $G_{M, x}$ to be the configuration graph of $M$ on input $x$. Then, by definition, $x \in L$ iff there exists a path from $c_{\text {start }}$ to $c_{\text {accept }}$ in $G_{M, x}$, where $c_{\text {start }}$ is the starting configuration and $c_{\text {accept }}$ is the accepting configuration (WLOG assume that there's exactly one accepting configuration).

We now define a formula $\phi_{i}(A, B)=1$ for two configurations $A, B$ if there exists a path from $A$ to $B$ in $G_{M, x}$ of length at most $2^{i}$. Precisely, we take the Boolean variables that encode the configuration state of $A$ and $B$ and define a formula for which the above fact is true. Let $\ell$ be the total number of variables in $A$ and $B$; then, the formula is one on $2 \ell$ variables, where $\ell \in O(S(n))$ by definition.

Clearly, we have that $\phi_{0}(A, B)=1 \operatorname{iff}(A, B) \in E\left(G_{M, x}\right)$, where $E(G)$ represents the edge set of the graph $G$. As such, $\phi_{0}$ can be encoded by the transition function of $M$. In the more general case where $i \neq 0$, we can simply write $\phi_{i}(A, B)=\left(\exists C \cdot \phi_{i-1}(A, C) \wedge \phi_{i-1}(C, B)\right)$. However, we're not quite done yet, because the formula $\phi_{i}(A, B)$ could be potentially exponentially sized in $A$ and $B$. There is, however, a trick to ensure that $\phi_{i}(A, B)$ is polynomially sized, and we will cover that in the next lecture.

