CS 6810: Theory of Computing

Fall 2023

Lecture 8: September 14, 2023

Lecturer: Eshan Chattopadhyay

Scribe: Omkar Bhalerao

1 NL = coNL

In the previous lecture, we introduced the following theorem:

Theorem 1.1 (Immerman, Szelepscensyi). NL = coNL.

We continue by proving this theorem. To do so, we first define the language $\overline{\text{PATH}}$:

Definition 1.2. $\overline{\text{PATH}} = \{ \langle G, s, t \rangle : \text{there is no s-t path in digraph } G = (V, E) \}.$

We now outline our proof statement along with some corollaries.

Theorem 1.3. There exists an $O(\log n)$ space nondeterministic algorithm for $\overline{\text{PATH}}$.

Corollary 1.4. NL = coNL.

Corollary 1.5. For all "nice" $S(n) > \log n$, NSPACE(S(n)) = coNSPACE(S(n)).

As an aside, note that one implication of Corollary 1.5 is that NPSPACE = coNPSPACE; however, we have already shown this, since we know that NPSPACE = PSPACE and that PSPACE is closed under its complement. In addition, we contrast this theorem to Savitch's theorem from the previous lecture: that NSPACE(S(n)) \subseteq DSPACE($S(n)^2$). In other words, there's no overhead when going from NSPACE to coNSPACE, unlike when going from NSPACE to DSPACE.

To begin the proof, we have the following definition:

Definition 1.6. $C_i = \{v \in V : there exists a path of length at most i from s to v\}.$

As such, $\overline{\text{PATH}}$ is equivalent to asking whether $t \notin C_n$.

Claim 1.7. There exists an $O(\log n)$ nondeterministic algorithm that can decide $[v \in C_i]$ for all *i*.

The proof of this is similar to the proof given in the previous lecture for deciding PATH, but we will outline it below:

Proof. We will describe such an algorithm below:

On the work tape, have a section representing a counter, a section representing the current guess, and a section representing the next guess. Begin by writing s to the current guess section. Then, at each iteration, nondeterministically choose a neighbor u of s, write it to the next guess section, and increment the counter. Then, write the next guess to the current guess section, and repeat. If we see node v at any point in this process, accept; otherwise, after the counter reaches i, reject.

Since at most $O(\log n)$ bits are needed to store the counter and the labels of all the nodes, this algorithm indeed only uses $O(\log n)$ space.

Claim 1.8. Given $|C_{i-1}| = r$, there exists a nondeterministic $O(\log n)$ space algorithm that can decide $[v \notin C_i]$ for all *i*.

Proof. We describe such an algorithm below:

First, our NDTM will nondeterministically guess a set $T \subseteq V$ such that |T| = r. Then, the machine will use claim 1 on all nodes in its guess to check whether it is correct. Though in general representing the set T could take space larger than $O(\log n)$, it's possible to sequentially go through each element of T to ensure that no more than $O(\log n)$ space in total is used. Once a correct guess T is found, our NDTM will simply sequentially go through all the nodes in T and check if v is connected to each of the nodes. If v is connected to any one of the nodes, our algorithm will reject. Otherwise, it will accept.

Claim 1.9. Given $|C_{i-1}| = r_{i-1}$, there exists a nondeterministic $O(\log n)$ space algorithm that either rejects, or outputs the correct size of C_i , and the said output happens for at least one execution path.

Proof. Again, we describe an algorithm.

For every node in the neighbors of C_{i-1} , our algorithm will nondeterministically guess whether $v \in C_i$ or $v \notin C_i$, and then verifies those guesses using Claim 1 and Claim 2. It will also maintain a counter that starts at r_{i-1} . If the algorithm makes a correct guess, then either 1 or 0 is added to the counter. Since the Claim 1 and Claim 2 algorithms are guaranteed to be correct for at least one path of execution, it's therefore the case that there's at least one path of execution for which the Claim 3 algorithm is also correct. In addition, we will use the same sequential strategies as previously to ensure that no more than $O(\log n)$ total space is used.

Now that we have these three claims, our overall algorithm to solve PATH is as follows: first, we set $|c_0| = 1$. From this, we compute $|c_1|, \ldots, |c_n|$ sequentially using Claim 3 (implicitly using Claims 1 and 2 in the process). Lastly, we answer $[t \notin C_n]$ using Claim 2. Thus, we've shown that $\overline{\text{PATH}} \in \mathsf{NL}$ and thus that $\mathsf{NL} = \mathsf{coNL}$.

2 **PSPACE**-completeness

We now switch topics to PSPACE-completeness.

Definition 2.1 (PSPACE-completeness). A language L is PSPACE-complete if $L \in PSPACE$ and for all $L' \in PSPACE$, $L' \leq_P L$, where \leq_P means that L' is polynomial-time Karp reducible to L.

To aid us in talking about PSPACE-completeness, we will now introduce a canonical language to represent PSPACE:

Definition 2.2 (True Quantified Boolean Formulas (TQBF)). TQBF is the language of true quantified Boolean formulas; in other words, formulas of the following form that evaluate to true:

$$Q_1 x_1 Q_2 x_2 \dots Q_n x_n \phi(x_1, x_2, \dots, x_n)$$

where each Q_i is a quantifier (i.e. \forall or \exists), and ϕ is a Boolean formula of variables x_1, \ldots, x_n .

We will show that TQBF is indeed PSPACE-complete.

Claim 2.3. TQBF \in PSPACE.

Proof. We describe a polynomial-space algorithm for deciding TQBF.

First, our TM will brute-force over all variable assignments. It iterates over all quantifiers in the process, and in doing so, will ensure that for all \forall -quantified variables, both assignments result in a true formula, and for all \exists -quantified variables, at least one assignment results in a true formula. If this is true for all variables, our TM accepts; otherwise, it rejects.

This TM uses polynomial space because space can be reused across the different recursive calls. This is captured in the following recurrence, where n is the number of quantifiers, m is the size of the formula ϕ , and S(n,m) is the space complexity at that level:

$$S(n,m) = S(n-1,m) + O(\operatorname{poly}(n,m))$$

Again, since we reuse space across each recursive call, this recurrence is correct. Thus, the total space complexity used is still O(poly(n, m)), proving that TQBF \in PSPACE.

Claim 2.4. For all $L \in \mathsf{PSPACE}$, $L \leq_P \mathsf{TQBF}$.

Proof. For the sake of time, we omit the full proof; this will be given in the next lecture. We will, however, go through the setup steps for it.

First, note that if $L \in \mathsf{PSPACE}$, then there exists a TM M that uses cn^c space for some constant c and computes L. We will denote cn^c by S(n) from here on out.

We define $G_{M,x}$ to be the configuration graph of M on input x. Then, by definition, $x \in L$ iff there exists a path from c_{start} to c_{accept} in $G_{M,x}$, where c_{start} is the starting configuration and c_{accept} is the accepting configuration (WLOG assume that there's exactly one accepting configuration).

We now define a formula $\phi_i(A, B) = 1$ for two configurations A, B if there exists a path from A to B in $G_{M,x}$ of length at most 2^i . Precisely, we take the Boolean variables that encode the configuration state of A and B and define a formula for which the above fact is true. Let ℓ be the total number of variables in A and B; then, the formula is one on 2ℓ variables, where $\ell \in O(S(n))$ by definition.

Clearly, we have that $\phi_0(A, B) = 1$ iff $(A, B) \in E(G_{M,x})$, where E(G) represents the edge set of the graph G. As such, ϕ_0 can be encoded by the transition function of M. In the more general case where $i \neq 0$, we can simply write $\phi_i(A, B) = (\exists C.\phi_{i-1}(A, C) \land \phi_{i-1}(C, B))$. However, we're not quite done yet, because the formula $\phi_i(A, B)$ could be potentially exponentially sized in A and B. There is, however, a trick to ensure that $\phi_i(A, B)$ is polynomially sized, and we will cover that in the next lecture.