
CS 6810: Theory of Computing Fall 2023

Lecture 7: Sep 11, 2023

Lecturer: Eshan Chattopadhyay Scribe: Sanjit Basker

1 PSPACE and NPSPACE, continued

Recall the definition of a configuration of a Turing Machine: it is the contents of the input/output
tapes and all of the work tapes, the locations of the working heads, and the state of the Turing
Machine. For a Turing Machine with space complexity s(n), there are 2O(s(n)) configurations
reachable from the starting configuration on an input of size n, where the big-O notation hides a
constant that depends on the machine but not the size of the input.

These configurations form a graph GM,x. For a nondeterministic TM M , each node will have
outdegree at most 2.

Also recall that we can assume WLOG that M has a single halting configuration: if not, we
can add some “cleanup” phases in which the machine clears the contents of its working tapes and
writes a single 1 on the output tape.

Consider the language PATH = {⟨G, s, t⟩ : there exists a path from s to t}.

Theorem 1.1 (Savitch). There exists an O(log2 n) space algorithm for PATH.

Proof. Let T (u, v, i) be 1 if there is a (directed) path of length ≤ 2i from u to v. The base cases
occur when i = 0, in which case you simply check whether the edge appears in G. For the recursive
case, we use the relation

T (u, v, i) =
∨
w∈V

(T (u,w, i− 1) ∧ T (w, v, i− 1)),

since if there is a path of length ≤ 2i from u to v, it must contain some node w halfway through
the path. There are O(n2 log n) subproblems, because you can pick a pair of vertices (u, v) and
log n choices for i. We want the answer to T (u, v, log n).

The implementation requires some care to ensure that it uses O(log2 n) space: starting with
the call T (u, v, n) we first write down u and v in O(log n) space. Then, we iterate through the
possibilities for w: for each possibility, we solve the first subproblem, store its result, solve the second
subproblem, and then take the and of both results. If we re-use space for the two subproblems, our
space used obeys the recurrence s(i) ≤ c log(n) + s(i− 1) =⇒ s(n) ∈ O(log2 n).
The analogy is that our “stack depth” is O(log n) and the size of each stack frame is O(log n).

Corollary 1.2. For space-constructible s(n), NSPACE(s(n)) ⊆ DSPACE(s2(n)).

Corollary 1.3. PSPACE = NPSPACE.

2 More space complexity

Now, consider the set NL. This is the set of languages L for which there exists a non-deterministic
TM which, on inputs of size n takes O(log n) space and decides L. The class coNL is defined
similarly.

1

Lecture 7: Sep 11, 2023 2

Note that NL ⊆ P , since we can apply the above construction to get a configuration graph with
2c logn ≤ nc vertices and traverse the graph from the starting configuration.

The definition of a reduction in NL requires some care, because if we allowed any poly-time
Karp reduction, then the reducer would have the full power of a poly-time TM (e.g. it could solve
the problem and then “reduce” to a fixed yes- or no-instance).

Definition 2.1. The function f : {0, 1}∗ → {0, 1}∗ is implicitly computable in s(n) space if there
exists a TM M that runs in s(n) space, and which on input ⟨x, i⟩ outputs (f(x))i, the ith bit of
f(x).

We also place the requirement that for some c, |f(x)| ≤ c|x|c.

Claim 2.2. If f and g are implicitly computable in O(log n) space, then f = f ◦ g is also implicitly
computable in O(log n) space.

Proof. The idea is to run Mf but compute the bits of g(x) on the fly.
To be more concrete, suppose we are implicitly computing the ith bit of (f ◦g)(x). We simulate

Mf , except that instead of giving it the input g(x) (the entirety of which could be longer than we
can fit on one of our tapes), for every step of Mf we first check the location of Mf ’s input read
head and compute the value at that location.

The additional bookkeeping (the location of the input head) can be done with O(log n) bits,
and the rest of the simulation is constant overhead.

Definition 2.3. Language A is logspace reducible to language B if there is a function f : {0, 1}∗ →
{0, 1}∗ that is implicitly computable in O(log n) space, and x ∈ A iff f(x) ∈ B.

Definition 2.4. A language L is NL-complete if for every language B ∈ NL, B is logspace reducible
to L.

Lemma 2.5. PATH is NL-complete.

Proof. First, we show that PATH ∈ NL, so we should define a nondeterministic TM that computes
it in O(log n) space. This machine will have two “variables,” a current vertex and a counter. While
the counter is smaller than the number of vertices in the input graph, it increments the counter
and then nondeterministically chooses one of the vertices adjacent to the current one (concretely,
it could pad the number of vertices up to the next power of 2, nondeterministically select a random
number in the range, and halt and reject if the vertex is nonexistent or not adjacent). If it ever
reaches t, it halts and accepts.
The counter and current vertex variables each take O(log n) space. Some additional bookkeeping
may be needed in order to search the adjacency list of the current vertex, but this is also O(log n)
space.

Now, we show that PATH is NL-complete. If L is in NL, we know that there’s some log-space
NDTM M which uses at most c log n tape cells to decide L. We will again use the configuration
graph in the reduction to PATH, but with the added restriction that our reduction must be
implicitly computable in O(log n) space.

The input to PATH is ⟨G, s, t⟩ whereG is the configuration graph, s is the starting configuration
of M , and t is the ending configuration of M . The configuration graph will contain at most nc

vertices. Assuming some encoding from the configurations of M into the integers, we can use the
adjacency matrix representation of the graph: when asked for the bit of the input at an index
i < n2c, we’ll parse it as corrsponding to two configurations c1 and c2 of M processing x, we would
use the transition function ofM to determine if c2 is one of the two configurations that can follow c1.

Lecture 7: Sep 11, 2023 3

The input also contains another 2cn log n bits, hard-coded to be the identifiers of the starting and
accepting configurations of M processing x (and possibly some other information at the beginning
describing the size of the graph), which are implicitly computable in O(log n) space.

Corollary 2.6. PATH is co-NL complete.

We’ll prove the following next class:

Theorem 2.7. NL = coNL.

We also state an interesting theorem proven recently.

Theorem 2.8 (Immerman, Szelepscensyi). NL = co-NL

	PSPACE and NPSPACE, continued
	More space complexity

