
CS 6810: Theory of Computing Fall 2023

Lecture 6: Sep 7, 2023

Lecturer: Eshan Chattopadhyay Scribe: Santiago Lai

1 Oracle TMs and Relativitation (Continued)

Theorem 1.1. (Baker-Gill-Solovay Theorem) There exist oracles A,B such that PA = NPA, and
PB ̸= NPB.

Moral: Cannot settle P vs NP by a proof that relativizes.

Proof. Let A = {(⌊M⌋, x, 1n)|M accepts x in ≤ 2n steps}. We’ll prove that EXP = PA = NPA,
where EXP =

⋃
c∈NDTIME(2n

c
), by showing that EXP ⊆ PA ⊆ NPA ⊆ EXP .

By definition, PA ⊆ NPA. To show that EXP ⊆ PA, suppose L ∈ EXP . This implies that
∃ML such that ML computes L in 2n

c
time for some constant c. We construct a TM NA that

computes L in polynomial time by the following. We’ll hardcode c and ⌊ML⌋ in NA, and for any
input x, NA checks if (⌊ML⌋, x, 1n

c
) ∈ A, which takes polynomial time, by writing it on the oracle

tape and transitions to qquery. The output of NA will just be the answer of oracle. If the oracle
answers YES, it implies that ML accepts x in 2n

c
time, and x ∈ L. Similarly, if oracle answers

NO, it implies that ML rejects x, and x /∈ L. As a result, NA computes L in polynomial time, so
EXP ⊆ PA.

Additionally, to show that NPA ⊆ EXP , suppose L ∈ NPA. Then there exists a NDTM N
such that NA computes L in polynomial time, i.e., there are at most 2poly(n) possible paths that
the machine executes. In each path it makes at most poly(n) oracle calls, and each oracle call will
take at most 2poly(n) steps. So on a deterministic Turing machine, it takes O(2poly(n)poly(n)2poly(n))
time to compute L, which proves that NPA ⊆ EXP . This finishes our proof that PA = NPA.

To find B such that PB ̸= NPB, we first define UB = {1n|∃y ∈ B, |y| = n} for any B ⊆ {0, 1}∗.
Notice that UB ∈ NPB, since for an input 1n an NDTM can simply guess non-deterministicly
x ∈ {0, 1}n with a path of n steps and check if x ∈ B with the oracle.

To finish the proof, we want to find B with UB /∈ PB. Let {Mk} be an enumeration of TMs.
In state 0, set B = ∅. In state i, only finitely many strings y have been decided if y ∈ B. Let ni be
the smallest integer such that no string ∈ {0, 1}n has been decided. Consider the algorithm below:

Run MB
i on 1ni , and simulate Mi for 2

ni/10 steps
if Mi makes query of y ∈ B then

if y ∈ B or not is already decided then
Answer truthfully

else
Answer No

end if
end if
if Mi answers YES then

set y /∈ B for any unqueried y
else

set z ∈ B for some unqueried z, since Mi cannot ask every z
end if

1

Lecture 6: Sep 7, 2023 2

To prove UB /∈ PB, suppose UB ∈ PB. Let L(Mi) = UB where Mi runs in c · nc time. Consider
Mi on input 1ni . By construction of B, Mi cannot query every y of length ni since it only runs
for 2ni/10 steps. If Mi outputs YES, since any y of length n will be set not in B, we know that
1n /∈ UB. If Mi outputs NO, since we make some unqueried z ∈ B, we have 1n ∈ B. Either way,
Mi makes a mistake on 1ni , which is a contradiction. Therefore, UB /∈ PB, and PB ̸= NPB.

2 Space complextiy

Definition 2.1. A Turing machine M on input x uses space S if at most S work and output tape
cells are accessed.

Remark 2.2. Notice that it takes at least o(log(n)) space for input of length n. If S(n) =
o(log(log(n))) (or smaller), it’s regular language.

Definition 2.3. Define DSPACE similarly to DTIME, that is, DSPACE(S(n)) := all languages
such that there is a TM that computes it in S(n) space. Similarly, NSPACE(S(n)) := and
PSPACE =

⋃
cDSPACE(nc), all languages such that there is a NDTM that computes it in

O(S(n)) space.

Definition 2.4. Define PSPACE =
⋃

c∈NDSAPCE(nc), NPSPACE =
⋃

c∈NNSAPCE(nc).
Let L = DSPACE(log(n)), NL = NSPACE(log(n)).

Question 1. What is the relation between the complexity classes L, NL and P? Similarly, can we
say anything about the relationship between the complexity classes PSPACE, P and NP?

Claim 2.5. P ⊆ PSPACE, and NP ⊆ PSPACE.

Proof. Since P ⊆ NP , we just need to prove that NP ⊆ PSPACE. It’s because we can brute-force
each path of the NDTM while reusing the same tape cells for each step of the path.

Claim 2.6. NSPACE ⊆ EXP .

The proof of the above claim is based on the notion of configuration graphs that we now
define.

Configuration graph of a TM: A configuration of TM contains its current state, the contents
of non-input tapes and the tape heads. The number of possible configurations at a certain point
is thus |Q| × 2O(S(n)) × S(n). For a TM M using space O(S(n)) on input x, the configuration
graph GM,x is defined as follows: The nodes of GM,x will be all the configurations, which is at most
2CS(n). An edges u → v exist in the graph if M can go from configuration u to v in 1 step.

We are now ready to prove Claim 2.6. Suppose L ∈ NSPACE(S(n)), there exists NDTM M
using S(n) space that computes L. Then we can simply construct the configuration graph, and use
BFS to check the connectivity from the start configuration to accept configuration. This process
takes 2CS(n) time, so L ∈ EXP .

Corollary 2.7. For any space constructble function S(n), we have DSPACE(S(n)) ⊆ NSPACE(S(n)) ⊆
DTIME(2O(S(n))). Thus, L ⊆ NL ⊆ P .

Remark 2.8. It is conjectured that L = NL and NL ̸= P .

	Oracle TMs and Relativitation (Continued)
	Space complextiy

