Fall 2023
Lecture 6: Sep 7, 2023
Lecturer: Eshan Chattopadhyay
Scribe: Santiago Lai

1 Oracle TMs and Relativitation (Continued)

Theorem 1.1. (Baker-Gill-Solovay Theorem) There exist oracles A, B such that $P^{A}=N P^{A}$, and $P^{B} \neq N P^{B}$.

Moral: Cannot settle P vs NP by a proof that relativizes.
Proof. Let $A=\left\{\left(\lfloor M\rfloor, x, 1^{n}\right) \mid M\right.$ accepts x in $\leq 2^{n}$ steps $\}$. We'll prove that $E X P=P^{A}=N P^{A}$, where $E X P=\bigcup_{c \in \mathbb{N}} D T I M E\left(2^{n^{c}}\right)$, by showing that $E X P \subseteq P^{A} \subseteq N P^{A} \subseteq E X P$.

By definition, $P^{A} \subseteq N P^{A}$. To show that $E X P \subseteq P^{A}$, suppose $L \in E X P$. This implies that $\exists M_{L}$ such that M_{L} computes L in $2^{n^{c}}$ time for some constant c. We construct a TM N^{A} that computes L in polynomial time by the following. We'll hardcode c and $\left\lfloor M_{L}\right\rfloor$ in N^{A}, and for any input x, N^{A} checks if $\left(\left\lfloor M_{L}\right\rfloor, x, 1^{n^{c}}\right) \in A$, which takes polynomial time, by writing it on the oracle tape and transitions to $q_{\text {query }}$. The output of N^{A} will just be the answer of oracle. If the oracle answers YES, it implies that M_{L} accepts x in $2^{n^{c}}$ time, and $x \in L$. Similarly, if oracle answers NO, it implies that M_{L} rejects x, and $x \notin L$. As a result, N^{A} computes L in polynomial time, so $E X P \subseteq P^{A}$.

Additionally, to show that $N P^{A} \subseteq E X P$, suppose $L \in N P^{A}$. Then there exists a NDTM N such that N^{A} computes L in polynomial time, i.e., there are at most $2^{\text {poly(n) }}$ possible paths that the machine executes. In each path it makes at most $\operatorname{poly}(n)$ oracle calls, and each oracle call will take at most $2^{\text {poly }(n)}$ steps. So on a deterministic Turing machine, it takes $O\left(2^{\text {poly }(n)}\right.$ poly $\left.(n) 2^{\text {poly }(n)}\right)$ time to compute L, which proves that $N P^{A} \subseteq E X P$. This finishes our proof that $P^{A}=N P^{A}$.

To find B such that $P^{B} \neq N P^{B}$, we first define $U_{B}=\left\{1^{n}|\exists y \in B,|y|=n\}\right.$ for any $B \subseteq\{0,1\}^{*}$. Notice that $U_{B} \in N P^{B}$, since for an input 1^{n} an NDTM can simply guess non-deterministicly $x \in\{0,1\}^{n}$ with a path of n steps and check if $x \in B$ with the oracle.

To finish the proof, we want to find B with $U_{B} \notin P^{B}$. Let $\left\{M_{k}\right\}$ be an enumeration of TMs. In state 0 , set $B=\emptyset$. In state i, only finitely many strings y have been decided if $y \in B$. Let n_{i} be the smallest integer such that no string $\in\{0,1\}^{n}$ has been decided. Consider the algorithm below:

Run M_{i}^{B} on $1^{n_{i}}$, and simulate M_{i} for $2^{n_{i}} / 10$ steps
if M_{i} makes query of $y \in B$ then
if $y \in B$ or not is already decided then
Answer truthfully
else
Answer No
end if
end if
if M_{i} answers YES then
set $y \notin B$ for any unqueried y
else
set $z \in B$ for some unqueried z, since M_{i} cannot ask every z
end if

To prove $U_{B} \notin P^{B}$, suppose $U_{B} \in P^{B}$. Let $L\left(M_{i}\right)=U_{B}$ where M_{i} runs in $c \cdot n^{c}$ time. Consider M_{i} on input $1^{n_{i}}$. By construction of B, M_{i} cannot query every y of length n_{i} since it only runs for $2^{n_{i}} / 10$ steps. If M_{i} outputs YES, since any y of length n will be set not in B, we know that $1^{n} \notin U_{B}$. If M_{i} outputs NO, since we make some unqueried $z \in B$, we have $1^{n} \in B$. Either way, M_{i} makes a mistake on $1^{n_{i}}$, which is a contradiction. Therefore, $U_{B} \notin P^{B}$, and $P^{B} \neq N P^{B}$.

2 Space complextiy

Definition 2.1. A Turing machine M on input x uses space S if at most S work and output tape cells are accessed.

Remark 2.2. Notice that it takes at least $o(\log (n))$ space for input of length n. If $S(n)=$ $o(\log (\log (n)))$ (or smaller), it's regular language.

Definition 2.3. Define DSPACE similarly to DTIME, that is, DSPACE $(S(n)):=$ all languages such that there is a TM that computes it in $S(n)$ space. Similarly, $\operatorname{NSPACE}(S(n)):=$ and $P S P A C E=\bigcup_{c} D S P A C E\left(n^{c}\right)$, all languages such that there is a NDTM that computes it in $O(S(n))$ space.

Definition 2.4. Define PSPACE $=\bigcup_{c \in \mathbb{N}} D S A P C E\left(n^{c}\right)$, $N P S P A C E=\bigcup_{c \in \mathbb{N}} N S A P C E\left(n^{c}\right)$. Let $L=\operatorname{DSPACE}(\log (n)), N L=N S P A C E(\log (n))$.

Question 1. What is the relation between the complexity classes $L, N L$ and P? Similarly, can we say anything about the relationship between the complexity classes PSPACE, P and NP?

Claim 2.5. $P \subseteq P S P A C E$, and $N P \subseteq P S P A C E$.
Proof. Since $P \subseteq N P$, we just need to prove that $N P \subseteq P S P A C E$. It's because we can brute-force each path of the NDTM while reusing the same tape cells for each step of the path.

Claim 2.6. $N S P A C E \subseteq E X P$.
The proof of the above claim is based on the notion of configuration graphs that we now define.

Configuration graph of a TM: A configuration of TM contains its current state, the contents of non-input tapes and the tape heads. The number of possible configurations at a certain point is thus $|Q| \times 2^{O(S(n))} \times S(n)$. For a TM M using space $O(S(n))$ on input x, the configuration graph $G_{M, x}$ is defined as follows: The nodes of $G_{M, x}$ will be all the configurations, which is at most $2^{C S(n)}$. An edges $u \rightarrow v$ exist in the graph if M can go from configuration u to v in 1 step.

We are now ready to prove Claim 2.6. Suppose $L \in N S P A C E(S(n))$, there exists NDTM M using $S(n)$ space that computes L. Then we can simply construct the configuration graph, and use BFS to check the connectivity from the start configuration to accept configuration. This process takes $2^{C S(n)}$ time, so $L \in E X P$.

Corollary 2.7. For any space constructble function $S(n)$, we have $D S P A C E(S(n)) \subseteq N S P A C E(S(n)) \subseteq$ DTIME $\left(2^{O(S(n))}\right)$. Thus, $L \subseteq N L \subseteq P$.

Remark 2.8. It is conjectured that $L=N L$ and $N L \neq P$.

