
CS 6810: Theory of Computing Fall 2023

Lecture 5: September 5, 2023

Lecturer: Eshan Chattopadhyay Scribe: Evan Williams

1 Ladner’s Theorem, Continued

We now show that SATH is not NP-complete. Suppose for sake of contradiction that SATH is
NP-complete. Then, there must exist a polynomial time reduction from SAT to SATH by Lemma
1.6 from the previous lecture. This reduction maps a boolean formula ψ of size n to an instance
of SATH of length nc for some constant c. This instance would be of the form ψ ◦ 01kH(k)

where
k = |ψ| and nc = k + kH(k). Observe that because SATH ̸∈ P , limn→∞H(n) = ∞ (by Corollary
1.8 from the previous lecture). So limn→∞ |ψ|/n = 0. Observe that we have effectively reduced

the SAT instance ψ to an instance ϕ where |ϕ|
|ψ| = o(|ψ|). We can apply this reduction repeatedly

to obtain a SAT instance of constant size. 1) Compute H(k) for every k ≤ log n, 2) simulate at
most log log n machines for every input of length at most logn log logn(log n)log logn = o(n) steps,
and 3) compute SAT on all inputs of length at most log n. We effectively obtain a SAT instance
of constant size, which implies that SAT ∈ P , contradicting the supposition that P ̸= NP . ■

2 Oracle Turing Machines and Relativization

Definition 2.1. An oracle is a language O ⊆ {0, 1}∗ and a query is a string x ∈ {0, 1}∗

The oracle is able to answer queries about a particular function. In other words, given a function
f : {0, 1}∗ → {0, 1}∗ and x, the oracle answers f(x).

Definition 2.2. Given an oracle O, an oracle Turing Machine MO is a multi-tape Turing
Machine with the following:

• An oracle tape

• Three additional states, qquery, qyes, qno

The oracle Turing Machine is able to write a string x on its oracle tape and then transition into
qquery. If the oracle says yes, then the machine transitions to state qyes, otherwise, it transitions
to state qno. We define the complexity class DTIMEO(T (n)) as the set of languages the oracle
Turing Machine MO can compute in O(T (n)) time. Thus, we have analogous complexity classes
for P and NP - PO and NPO.

Question 1. Is Co-NP ⊆ PSAT ?

Yes. Construct an oracle Turing Machine M
¯SAT that takes in a string x and writes it on its oracle

tape to run a query. Then, it simply returns the opposite of whatever the oracle returns. So the
oracle Turing Machine M

¯SAT will always correctly compute SAT with linear overhead.

Theorem 2.3. There exist oracles A, B such that PA = NPA, but PB ̸= NPB

1

Lecture 5: September 5, 2023 2

This idea was presented by Baker-Gill-Solovay. A proof relativizes if you enumerate over Turing
Machines and use a Universal Turing Machine to simulate other Turing Machines. We observe that
any diagonalization proof must relativize.

Now we prove the theorem. Let A = {< M,x, 1n >: M accepts x in2nsteps}. Recall that
EXP =

⋃
c∈NDTIME(2(nc)). We claim that PA = NPA = EXP . Obviously PA ⊆ NPA,

so it suffices to show that EXP ⊆ PA and NPA ⊆ EXP .

The remainder of the proof will be detailed in the next lecture.

http://cse.ucdenver.edu/~cscialtman/complexity/Relativizations%20of%20the%20P=NP%20Question%20(Original).pdf

	Ladner's Theorem, Continued
	Oracle Turing Machines and Relativization

