CS 6810: Theory of Computing

Fall 2023

Lecture 5: September 5, 2023

Lecturer: Eshan Chattopadhyay

Scribe: Evan Williams

1 Ladner's Theorem, Continued

We now show that SAT_H is not NP-complete. Suppose for sake of contradiction that SAT_H is NP-complete. Then, there must exist a polynomial time reduction from SAT to SAT_H by Lemma 1.6 from the previous lecture. This reduction maps a boolean formula ψ of size n to an instance of SAT_H of length n^c for some constant c. This instance would be of the form $\psi \circ 01^{k^{H(k)}}$ where $k = |\psi|$ and $n^c = k + k^{H(k)}$. Observe that because $SAT_H \notin P$, $\lim_{n\to\infty} H(n) = \infty$ (by Corollary 1.8 from the previous lecture). So $\lim_{n\to\infty} |\psi|/n = 0$. Observe that we have effectively reduced the SAT instance ψ to an instance ϕ where $\frac{|\phi|}{|\psi|} = o(|\psi|)$. We can apply this reduction repeatedly to obtain a SAT instance of constant size. 1) Compute H(k) for every $k \leq \log n$, 2) simulate at most log log n machines for every input of length at most log $n \log \log n(\log n)^{\log \log n} = o(n)$ steps, and 3) compute SAT on all inputs of length at most log n. We effectively obtain a SAT instance of constant $SAT \in P$, contradicting the supposition that $P \neq NP$.

2 Oracle Turing Machines and Relativization

Definition 2.1. An oracle is a language $O \subseteq \{0,1\}^*$ and a query is a string $x \in \{0,1\}^*$

The oracle is able to answer queries about a particular function. In other words, given a function $f: \{0,1\}^* \to \{0,1\}^*$ and x, the oracle answers f(x).

Definition 2.2. Given an oracle O, an oracle Turing Machine M^O is a multi-tape Turing Machine with the following:

- An oracle tape
- Three additional states, q_{query}, q_{yes}, q_{no}

The oracle Turing Machine is able to write a string x on its oracle tape and then transition into q_{query} . If the oracle says yes, then the machine transitions to state q_{yes} , otherwise, it transitions to state q_{no} . We define the complexity class $DTIME^O(T(n))$ as the set of languages the oracle Turing Machine M^O can compute in O(T(n)) time. Thus, we have analogous complexity classes for P and $NP - P^O$ and NP^O .

Question 1. Is $Co-NP \subseteq P^{SAT}$?

Yes. Construct an oracle Turing Machine $M^{S\bar{A}T}$ that takes in a string x and writes it on its oracle tape to run a query. Then, it simply returns the opposite of whatever the oracle returns. So the oracle Turing Machine $M^{S\bar{A}T}$ will always correctly compute SAT with linear overhead.

Theorem 2.3. There exist oracles A, B such that $P^A = NP^A$, but $P^B \neq NP^B$

This idea was presented by Baker-Gill-Solovay. A proof **relativizes** if you enumerate over Turing Machines and use a Universal Turing Machine to simulate other Turing Machines. We observe that any diagonalization proof must relativize.

Now we prove the theorem. Let $A = \{ < M, x, 1^n >: M \text{ accepts } x \text{ in } 2^n \text{steps} \}$. Recall that $EXP = \bigcup_{c \in \mathbb{N}} DTIME(2^{(n^c)})$. We claim that $P^A = NP^A = EXP$. Obviously $P^A \subseteq NP^A$, so it suffices to show that $EXP \subseteq P^A$ and $NP^A \subseteq EXP$.

The remainder of the proof will be detailed in the next lecture.