
CS 6810: Theory of Computing Fall 2023

Lecture 4: Aug 31, 2023

Lecturer: Eshan Chattopadhyay Scribe: Tenghao Li

In this lecture, we proved the Ladner’s Theorem. The only assumption we used in this theorem
and its proof is that NP ̸= P. We finished the proof by explicitly constructing a language SATH .

1 Ladner’s Theorem

Theorem 1.1 (Ladner’s Theorem). Given that NP ̸= P, there exists a language L ∈ NP\P such
that L is not NP-Complete.

To prove the theorem, we aim to explicitly construct the language L by ”padding” the SAT
language. Recall that SAT (Boolean Satisfiability Problem) is the problem of determining if there
exists a True/False assignment that satisfies the given boolean fomula.

Example 1.2.
SAT′ = {ϕ ◦ 12n : |ϕ| = n, ϕ ∈ SAT}

SAT′ ∈ P because the TM can brute force all possible boolean assignments in O(n2n) time.
Since the size of the input is N = 2n, the running time is polynomial with repect to the input size
N , namely O(N logN). Intuitively, SAT′ is an example of padding too much.

Example 1.3.
SAT′′ = {ϕ ◦ 1nc

: |ϕ| = n, ϕ ∈ SAT}

where c is a constant.

SAT′′ is NP-complete, because SAT ≤p SAT′′ by simply mapping ϕ to ϕ ◦ 1n
c
. Since c is a

constant, it is a poly-time reduction. Intuitively, SAT′′ is an example of padding too little.To find
the right number of padded 1s, we define the following language SATH and function H(n).

Definition 1.4.
SATH = {ϕ ◦ 1H(n) : |ϕ| = n, ϕ ∈ SAT}

Definition 1.5. H(n) is the smallest natural number i ≤ log logn such that the TM Mi correctly
solves x ∈ SATH within i|x|i time, for all input x ∈ {0, 1}∗ with |x| ≤ log n. If no such i exists,
then H(n) := log log n.

The definition ofH is self-referencingH itself. However, this definition is not cyclic. To compute
H(n), we only consider the input x with size no greater than log n. Therefore, H(n) is recursively
defined by values of function H on smaller integers. To intuitively understand these definitions,
consider a list of Turing Machines M1,M2, ...,Mi, ...,Mlog logn. M1 allows linear running time, M2

allows quadratic running time, and so on. We run these TMs on the input set S = {x ∈ {0, 1}∗ :
|x| ≤ log n} until we find the smallest integer i such that Mi can correctly determine if x ∈ SATH

for all x ∈ S in polytime.

Lemma 1.6. If SATH ∈ P then H(n) ≤ c for all n ∈ N where c is a constant.

1

Lecture 4: Aug 31, 2023 2

Proof. Since SATH ∈ P, there exists a polytime TM M that solves SATH . Denote β = ⌊M⌋. Since
we can always padding the TM (e.g adding some useless states), assume β is large enough such
that the running time of TM is bounded by βnβ.
If n ≤ 22

β
, then by definition H(n) is no greater than log log n.

H(n) ≤ log log n ≤ β

If n > 22
β
, then obeserve that M = Mβ. Since Mβ always solves SATH within βnβ steps, the

smallest idex of TM is no greater than β. By definition of H(n), we know that H(n) ≤ β.

Lemma 1.7. If H(n) = β for infinitely many n’s, then SATH ∈ P.

Proof. We aim to show that Mβ solves SATH in βnβ steps. For the sake of contradiction, suppose
there exists an input x with |x| = n such that Mβ makes an mistake on x or does not halt in βnβ

steps. Then for all n > 2n, H(n) ̸= β, which contradicts with the assumption that H(n) = β for
infinitely many n’s.

Corollary 1.8. If SATH /∈ P, then limn→∞H(n) = ∞.

Proof. This is easy to derive from Lemma 1.7.

Now we are ready to prove the Ladner’s Theorem.

Proof of Ladner’s Theorem. We aim to show that SATH ∈ NP \P and SATH is NP-complete.
First, SATH is clearly in NP. The certificate is a satisfying boolean assignment. The verifier

will first evaluate the formula on the given assignment, and then verify if the input contains the
right number of 1’s. The verifier runs in polynomial time.

Second, we claim that SATH /∈ P. For the sake of contradiction, assume SATH ∈ P. Then
by Lemma 1.6, H(n) ≤ c for all n ∈ N for some constant c. Therefore, this is exactly the same

situation of Example 1.3. We can constuct a polynomial reduction by mapping ϕ to ϕ ◦ 1n
H(n).

Thus,
SAT ≤p SATH

Hence, SAT ∈ P which is a contradiction to our only assumption that NP ̸= P.
Third, we now show that SATH is not NP-complete. (More details on next lecture)

	Ladner's Theorem

