
CS 6810: Theory of Computing Fall 2023

Lecture 24: Nov 14, 2021

Lecturer: Eshan Chattopadhyay Scribe: Daniel Brous

1 Relation between AM and MA

Theorem 1.1. MA ⊆ AM.

Proof. Take some language L ∈ MA. Due to the perfect completeness of Merlin Arthur protocols
as we proved in the last lecture, this means that there’s some Merlin Arthur protocol consisting of
a verifier V and polynomials f, g ∈ Z[|x|] such that

1. If x ∈ L, then there exists somem ∈ {0, 1}g(|x|) such that for all r ∈ {0, 1}f(|x|), V (x,m, r) = 1.

2. If x /∈ L, then for all m ∈ {0, 1}g(|x|),

Pr[V (x,m, r) = 1] <
1

3
.

We can first reduce the error bound of our verifier from 1
3 to 1

2g(|x|)+2 in the case where x /∈ L

without affecting perfect completeness: Let’s define a verifier V̂ (x,m, r) which produces a random
string r ∈ {0, 1}h(|x|) which encodes g(|x|) + 2 random strings ri of length f(|x|) each, i.e. r =
⟨r1, . . . , r|m|+2⟩ where ri ∼ Uniform[{0, 1}f(|x|)] and h(|x|) is the polynomial size of this encoding,
and runs V (x,m, ri) for each i and takes the and of the outputs, i.e.

V̂ (x,m, r) =

g(|x|)+2∧
i=1

V (x,m, ri).

1. If x ∈ L, then we already know that there exists some m ∈ {0, 1}g(|x|) such that for all
r ∈ {0, 1}f (|x|), V (x,m, r) = 1. Therefore, with this same m, for all sets of g(|x|) + 2 strings
ri ∈ {0, 1}f(|x|),

V̂ (x,m, r) =

g(|x|)+2∧
i=1

V (x,m, ri) = 1.

2. If x /∈ L, then for any m ∈ {0, 1}g(|x|),

Pr[V̂ (x,m, r) = 1] =

g(|x|)+2∏
i=1

Pr[V (x,m, ri) = 1] <

g(|x|)+2∏
i=1

1

2
=

1

2g(|x|)+2
.

Now let’s show that L ∈ AM. Let’s define a verifier V̂ ′ which does everything exactly as V̂ , but it
sends the random string r to Merlin so that we have an Arthur-Merlin protocol.

1. If x ∈ L, then we already know that there exists some m ∈ {0, 1}g(|x|) such that for all
r ∈ {0, 1}h(|x|), V̂ (x,m, r). Thus, if we define a Merlin which just outputs this m regardless
of the message r they receive, then we have that V̂ ′(x,m(x, r), r) = 1 for all r ∈ {0, 1}f(|x|).

1



Lecture 24: Nov 14, 2021 2

2. If x /∈ L, then we already know that for all m ∈ {0, 1}g(|x|), Pr[V̂ (x,m, r) = 1] < 1
2g(|x|)+2 .

Therefore, using this, we can see that

Pr[V̂ ′(x,m(x, r), r) = 1] =
1

2h(|x|)

∑
r∈{0,1}h(|x|)

1[V̂ ′(x,m(x, r), r) = 1]

≤ 1

2h(|x|)

∑
m∈{0,1}g(|x|)

∑
r∈{0,1}h(|x|)

1[V̂ (x,m, r) = 1]

=
∑

m∈{0,1}g(|x|)
Pr[V̂ (x,m, r) = 1]

<
∑

m∈{0,1}g(|x|)

1

2g(|x|)+2

=
1

22

<
1

3
,

where 1[E] is the indicator function of the event E, i.e. it’s 1 when E is true and 0 otherwise.

An immediate corollary of this is the following:

Corollary 1.2. AM[O(1)] = AM.

Proof. The proof is that if we have a signal sent from A to M , then M to A, then A to M , i.e.
an AMAM protocol, then the middle signal along with the random string that Arthur sends back
to Merlin is itself an MA protocol, and so we can apply the theorem we just proved to get an AM
protocol by repeating the original MA verifier sufficiently many times, and so our total protocol is
an AAMM protocol. But since sending two strings of length poly(|x|) is the same as sending one
string of length poly(|x|), this is really just an AM protocol. We can repeat this step O(1) times
to get that AM[O(1)] = AM.

Observation 1.3. We can’t say that AM[poly(n)] = AM because the size of the messages we have
to sum over to get our upper bound for the case with x /∈ L in the proof of Theorem 1.1 increases
with each switch from one of the MA subprotocols to an AM subprotocol, and this increase happens
too quickly.

2 Perfect Completeness of AM

We saw in the last lecture that we could get perfect completeness of MA, i.e. for any language
L ∈ MA, we can construct a verifier V that always get’s the right answer for some m (where
f(|x|), g(|x|) ∈ Z[|x|]):

1. If x ∈ L, then there exists an m ∈ {0, 1}f(|x|) such that for all r ∈ {0, 1}g(|x|), V (x,m, r) = 1

2. If x /∈ L, then for all m ∈ {0, 1}f(|x|), Pr[V (x,m, r) = 1] < 1
3 .
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It turns out that we can also get perfect completeness of AM. The way we’ll show this is by
constructing a perfectly complete MAM protocol for a language in AM and then using the theorem
we proved earlier to switch the perfectly complete MA subprotocol to a perfectly complete AM
subprotocol.

So take some language L ∈ AM. We haven’t proved it, but one can show that there exists some
ε > 0 on the order of 1

poly(n) and a verifier V such that if r ∼ Uniform[{0, 1}l], then

1. If x ∈ L, then there exists an m(x, r) such that Pr[V (x, r,m(x, r)) = 1] ≥ 1− ε.

2. If x /∈ L, then for all m(x, r), Pr[V (x, r,m(x, r)) = 1] ≤ ε.

Equivalently, if we define

1x,m(x,r) := {r ∈ {0, 1}f(|x|) | V (x,m(x, r), r) = 1}

and let L := 2f(|x|), then these two conditions can be written as

1. If x ∈ L, then there exists an m(x, r) such that |1x,m(x,r)| ≥ (1− ε)L.

2. If x /∈ L, then for all m(x, r), |1x,m(x,r)| ≤ εL.

We know from the previous lecture that there exists v1, . . . , vt ∈ {0, 1}f(|x|) with t = poly(n) such
that for all S ⊆ {0, 1}f(|x|) with |S| ≥ (1 − ε)L,

⋃t
i=1(vi + S) = {0, 1}f(|x|). This gives us the

following:

1. If x ∈ L, then there exists an m(x, r) such that |1x,m(x,r)| ≥ (1− ε)L. Therefore, there exists

an m(x, r) such that for all r ∈ {0, 1}f(|x|), there exists an i ∈ [t] such that V (x,m(x, r +
vi), r + vi) = 1.

2. If x /∈ L, then for all m(x, r), |1x,m(x,r)| ≤ εL. Therefore, for all m(x, r), using the union
bound, we have that

Pr[∃i ∈ [t] | V (x,m(x, r + vi), r + vi) = 1] = Pr

⋃
i∈[t]

{V (x,m(x, r + vi), r + vi) = 1}


≤

t∑
i=1

Pr[V (x,m(x, r + vi), r + vi) = 1]

≤ εt.

This means that for ε small enough, we have found a perfectly complete MAM protocol for
L where M sends v1, . . . , vt to A, A sends r, and M sends m(x, r) and i ∈ [t] back to A, and
the verifier is

V̂ (x, v1, . . . , vt,m, i, r) := V (x,m, r + vi).

Thus, using Theorem 1.1 to switch the MA subprotocol to an AM subprotocol, we get a
perfectly complete AM protocol for L.
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3 Why GI is probably not NP -complete

We use the following fact, that you will prove as part of homework.
Fact: AM ⊆ Π2.

Here’s a pretty good reason that we believe that GI is probably not NP -complete:

Theorem 3.1. If GI is NP -complete, then PH collapses to level 2.

Proof. It suffices to show that if GNI is co−NP complete, then Σ2 − SAT ∈ AM (because then
Σ2 = Π2 = PH since Σ2 − SAT is Σ2-complete and AM ⊆ Π2). Therefore, suppose that GNI is
co −NP complete. We know that GNI ∈ AM from the previous lecture. Thus, co −NP ⊆ AM.
By definition,

Σ2 − SAT = {ϕ | ∃xs.t.∀y, ϕ(x, y) = 1}.

Since co−NP = ∀P ,
Sx := {ϕ | ∀y, ϕ(x, y) = 1} ∈ co−NP

for all x, and so since co−NP ⊆ AM, there exists an AM protocol for Sx. If we first have Merlin
send in an x and then run this AM protocol for Sx, then it’s an MAM protocol for Σ2 − SAT .
Finally, using Theorem 1.1, we can switch the MA subprotocol to an AM subprotocol, meaning we
now have an AM protocol for Σ2 − SAT , i.e. Σ2 − SAT ∈ AM.

4 co−NP ⊆ IP

We want to show that SAT ∈ IP . Instead, we’ll show something stronger: we’ll create an IP
protocol for

S := {(ϕ, r) | r is the number of satisfying assignments of ϕ}.

Notice that (ϕ, 0) ∈ S if and only if ϕ ∈ SAT–this is why this statement is stronger.
Consider the following IP protocol: Given as input to the system some (ϕ, r), the prover P sends

r0, r1 to the verifier V , the verifier checks if r = r0 + r1, and sends back a random bit b. We then
reduce the formula ϕ to ϕb, i.e. setting the first variable in ϕ to have value b, and r to rb. We then
recurse the described interaction until the formula has all variables assigned to some fixed choices,
at which point the verifier returns 1 if all the checks were valid. This is 2n rounds total (where ϕ
has n variables). If (ϕ, r) ∈ S, then there must exists some {rb}b∈⋃{0,1}l,l∈[n] because we can choose
rb to be the number of satisfying assignments for ϕb (this works because then rb0 + rb1 = rb for all
b). If (ϕ, r) /∈ S however, then this protocol doesn’t quite work because

Pr[V = 1] ≥ 1

2n

Instead we’ll use polynomials. Fix some prime q ∈ [2n, 22n) (which we can compute with random-
ness). Given a boolean 3-CNF formula ϕ(x1, . . . , xn), we can make a polynomial fϕ(x1, . . . , xn) ∈
Fq[x] of degree 3m that evaluates to 1 on some assignment of x1, . . . , xn ∈ {0, 1} if and only if
ϕ evaluates to 1 on this assignment. We do this by making a degree 3 poly for each clause and
multiplying them. Literal xi gets mapped to the poly 1− xi, literal xi gets mapped to xi, and the
clause gets mapped to 1 minus the product of the literal polys. For example,

x1 ∨ x2 ∨ x5 7→ 1− (1− x1)(1− x2)x5.
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Now, since our polynomial has this property, it holds that∑
(x1,...,xn)∈{0,1}n

fϕ(x1, . . . , xn) = r

over the real numbers if and only if (ϕ, r) ∈ S. Since our prime q > 2n and r ≤ 2n, the above
equation holds over the real numbers if and only if it holds over Fq. Therefore, it suffices to create
an IP protocol for SUMCHECK, i.e: Given a degree d polynomial g(x1, . . . , xn), a prime p, and an
integer z, verify whether or not

z =
∑

(x1,...,xn)∈{0,1}n
g(x1, . . . , xn).

Here is the protocol we’ll use:

1. If n = 1, then accept if and only if g(0) + g(1) = z.

2. If n ≥ 2, prover sends univariate polynomial h(x1) ∈ Fp[x1].

3. If h(0)+h(1) ̸= z, then reject. Otherwise, pick a random bit b and recursively check whether

b =
∑

(x2,...,xn)∈{0,1}n−1

g(b, x2, . . . , xn).

If z =
∑

(x1,...,xn)∈{0,1}n g(x1, . . . , xn), then the prover can just send

h(x1) =
∑

(x2,...,xn)∈{0,1}n−1

g(x1, x2, . . . , xn)

and the verifier will accept. If z ̸=
∑

(x1,...,xn)∈{0,1}n g(x1, . . . , xn), then we claim that

Pr[V = 0] ≥
(
1− d

p

)n

.

We can prove this by induction. It’s true for n = 1 since the verifier will reject with proba-
bility 1. Suppose it’s true for n − 1 for some n ∈ N. If the prover were to send the correct
h(x1) =

∑
(x2,...,xn)∈{0,1}n−1 g(x1, x2, . . . , xn) in the first round, then since h(0) + h(1) ̸= z, the

verifier would reject with probability 1, so without loss we can assume that’s not the polyno-
mial they send. Therefore, since h(x1) −

∑
(x2,...,xn)∈{0,1}n−1 g(x1, x2, . . . , xn) ̸= 0 and is a de-

gree d polynomial, it has at most d roots, and so there are at most d values of x1 for which
h(x1) =

∑
(x2,...,xn)∈{0,1}n−1 g(x1, x2, . . . , xn). Thus,

Pr
b
[h(b) ̸=

∑
(x2,...,xn)∈{0,1}n−1

g(b, x2, . . . , xn)] ≥ 1− d

p

The probability that V rejects the initial claim is at most the probability that

h(b) ̸=
∑

(x2,...,xn)∈{0,1}n−1

g(b, x2, . . . , xn)
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and V rejects the recursive claim, i.e. whether h(b) =
∑

(x2,...,xn)∈{0,1}n−1 g(b, x2, . . . , xn). Since
the recursive claim is false, by the inductive hypothesis, V rejects this with probability at most(
1− d

p

)n−1
, and so V rejects the initial claim with probability at most

(
1− d

p

)(
1− d

p

)n−1

=

(
1− d

p

)n

.

Finally, now that we have our claim, we can use the fact that d = 3m and p = q in our special case
of SUMCHECK with boolean formula polynomials, and so our IP protocol accepts with (ϕ, r) /∈ S
with probability at most (

1− 3m

q

)n

.

Sine q > 2n, we get a desired bound on the case when (ϕ, r) /∈ S because m is polynomial in n.
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