
CS 6810: Theory of Computing Fall 2023

Lecture 22: Nov 7, 2023

Lecturer: Eshan Chattopadhyay Scribe: Jack Lo

1 Design Construction for NW-PRG

Recall that last lecture we proved the following theorem with the assumption that some (n, k)-design
exists.

Theorem 1.1. Suppose L ∈ DTIME(T (n)) is (S, ϵ)-hard, where L is a series of (S, ϵ)-hard
functions for every input length. Then there exists (S′, ϵ′)-PRGs {Gn : {0, 1}r(n) → {0, 1}m(n)}n
computable in time m(n) · T (n), where s′ = s−O(m · 2k) and ϵ′ = m · ϵ.

Definition 1.2. A (n, k)-design in universe [r] is a collection of sets S1, S2, . . . , Sm ⊆ [r] where
|Si| = n and ∀i ̸= j, |Si ∩ Sj | ≤ k.

We now show how to construct the design and how to set the parameters. First, fix field F = Fn.
For each polynomial P (x) on F of degree ≤ k, set Sp{(a, p(a)) : a ∈ F}.

Claim 1.3. For p ̸= q, |Sp ∩ Sq| ≤ k

The claim is proven by realizing that p − q has at most k roots, since they are polynomials of
degree ≤ k. Therefore, p and q intersect at most k times. With this construction, r = n2 because
both a and p(a) range from 1 to n, and m = nk+1.

Next, fix small constant δ > 0, so that S = 2δn and ϵ = 2−δn. Can we take T (n) = poly(n)?
In other words, is there a language L ∈ DTIME(poly(n)) that is (2δn, 2−δn)-hard? We know that
P ⊂ P/poly, so there are no languages in P that cannot be approximated by an exponential sized
circuit. Instead, we assume T (n) = 2O(n). i.e. L ∈ E.

Now, set k = n
10 log(n) . It follows that m = nk+1 = 2

δn
10 = 2

δ
10

√
r.

To conclude, if we are given a L ∈ E that is (2δn, 2−δn)-hard, then we can produce a (S′, ϵ′)-

PRG that takes in r = n2 bits and outputs exponential bits, where S′ = 2δn − 2
δ
10

n = Ω(2δn) and

ϵ′ = 2
δ
10

n2−δn ≤ 2−
δ
2
n. This implies any algorithm in BPP can be derandomized to a deterministic

algorithm that runs in time nO(logn). We note that one can construct better designs that will yield
BPP=P under the circuit lower bound assumptions against E.

We now switch topics to a new type of proof system.

2 Interactive Proofs

2.1 NP

Now, let us revisit the setting of NP but through the lens of the verifier. Recall that NP is
the set of decision problems verifiable by a deterministic Turing machine in polynomial time. An
alternative way of viewing NP is as a simple interactive proof system, with a ”prover” in addition
to the verifier. On input x, the all-powerful prover P comes up with some certificate for x, a1, and
sends it to the verifier V .

1

Lecture 22: Nov 7, 2023 2

x

P V
a1

If x ∈ L, then some prover that can convince the verifier that x is in L. If x /∈ L, then no prover
can convince the verifer that x is in L. Formally, for L ∈ NP,∃V such that:

x ∈ L ⇒ ∃P s.t. V (x, a1) = 1

x /∈ L ⇒ ∀P, V (x, a1) = 0

2.2 Deterministic Interactive Proofs (dIP)

Now, let us define a proof system by extending the number of rounds of communication.

Definition 2.1. Define a complexity class dIP [k(n)] where n is the length of x, and k(n) is the
number of rounds of communication between the prover and verifier.

x

P V
a2

a4

...

a1

a3

[Note that all messages a1, a2, . . . , ak(n) between prover and verifier are polynomial in the size of
x]. Let outV ⟨V, P ⟩(x) stand for the final output of the verifier. We now have: For L ∈ dIP [k(n)], ∃V
such that:

x ∈ L ⇒ ∃P s.t. outV ⟨V, P ⟩(x) = 1

x /∈ L ⇒ ∀P, outV ⟨V, P ⟩(x) = 0

Definition 2.2. dIP =
⋃

c∈N dIP [nc]

Claim 2.3. dIP = NP (Nothing is gained by allowing communication.)

Proof:
NP ⊆ dIP because NP = dIP [1].
dIP ⊆ NP : Using dIP verifier V , construct NP verifier Ṽ : On input x and certificate

a1, a2, a3, . . . , ak(n), Ṽ checks that all odd numbered messages ai are consistent with what V would

output. In other words, Ṽ checks that a1 = V (x), a3 = V (x, a1, a2), a5 = V (x, a1, a2, a3, a4), and so
on. If the odd numbered messages are consistent, then, Ṽ outputs V (x, a1, a2, a3, . . . , ak(n)); If the

odd numbered messages are not consistent, then Ṽ outputs 0. We can see that if V (x) = 1, then
such a certificate consisting of the the messages would exist, and Ṽ (x) = 1.

So if deterministic interactive proofs don’t work, what will?

Lecture 22: Nov 7, 2023 3

2.3 (Probabilistic) Interactive Proofs

We modify the deterministic interactive proof system defined above:
L is in IP [k(n)] if ∃V such that:

x ∈ L ⇒ ∃P s.t. Pr[outV ⟨V, P ⟩(x) = 1] >
2

3
(Completeness)

x /∈ L ⇒ ∀P, Pr[outV ⟨V, P ⟩(x) = 1] <
1

3
(Soundness)

Note that the randomness lies with the verifier and not the prover because there is always a
best strategy for the prover to take to trick the verifier.

We note that the following is a landmark theorem in complexity theory.

Theorem 2.4. IP = PSPACE.

Subject to time constraints, we may see some part of the proof of the above theorem in a future
lecture. For now, let us investigate the power of IP .

Definition 2.5. GNI = {⟨G0, G1⟩ : G0 ̸≈ G1}, where G0 ≈ G1 if ∃π : V → V such that
π(G0) = G1.

Claim 2.6. Graph Non-Isomorphism (GNI) ∈ IP

Algorithm:
On input of G0, G1, V flips a bit b, picks a random permutation π, and sends π(Gb) to P . P

then sends back b′, representing whether it thinks that Gb ≈ G0 or Gb ≈ G1. Then, V accepts if
b = b′.

To prove that this algorithm works, we consider its completeness and soundness. Completeness:
First, suppose G0 ̸≈ G1. Then, the prover can distinguish whether Gb is a permutation of G0 or
a permutation of G1 and send the correct b′ back. In this case, b′ = b with probability 1 and V
will always accept. Soundness: Now, suppose G0 ≈ G1. In this case, the prover cannot distinguish
whether Gb is a permutation of G0 or G1 since it is isomorphic to both, and can only guess. Thus,
it sends back 0 or 1 with probability 0.5 each, so b′ = b with probability 0.5. Although the 0.5
acceptance probability for isomorphic graphs falls below the 1

3 bound, the algorithm can be repeated
over and over again to drive the probability down. Thus, we have shown that GNI ∈ IP

Note that we have assumed that V ’s coins are unknown to P . This is called a private randomness
setting. However, as we will see in the next lecture, this relaxing this assumption to a public
randomness setting does not affect the proof.

	Design Construction for NW-PRG
	Interactive Proofs
	NP
	Deterministic Interactive Proofs (dIP)
	(Probabilistic) Interactive Proofs

