CS 6810: Theory of Computing

Lecture 22: Nov 7, 2023

Lecturer: Eshan Chattopadhyay

Scribe: Jack Lo

Fall 2023

1 Design Construction for NW-PRG

Recall that last lecture we proved the following theorem with the assumption that some (n, k)-design exists.

Theorem 1.1. Suppose $L \in DTIME(T(n))$ is (S,ϵ) -hard, where L is a series of (S,ϵ) -hard functions for every input length. Then there exists (S',ϵ') -PRGs $\{G_n : \{0,1\}^{r(n)} \to \{0,1\}^{m(n)}\}_n$ computable in time $m(n) \cdot T(n)$, where $s' = s - O(m \cdot 2^k)$ and $\epsilon' = m \cdot \epsilon$.

Definition 1.2. A (n,k)-design in universe [r] is a collection of sets $S_1, S_2, \ldots, S_m \subseteq [r]$ where $|S_i| = n$ and $\forall i \neq j$, $|S_i \cap S_j| \leq k$.

We now show how to construct the design and how to set the parameters. First, fix field $\mathbb{F} = \mathbb{F}_n$. For each polynomial P(x) on \mathbb{F} of degree $\leq k$, set $S_p\{(a, p(a)) : a \in \mathbb{F}\}$.

Claim 1.3. For $p \neq q$, $|S_p \cap S_q| \leq k$

The claim is proven by realizing that p - q has at most k roots, since they are polynomials of degree $\leq k$. Therefore, p and q intersect at most k times. With this construction, $r = n^2$ because both a and p(a) range from 1 to n, and $m = n^{k+1}$.

Next, fix small constant $\delta > 0$, so that $S = 2^{\delta n}$ and $\epsilon = 2^{-\delta n}$. Can we take T(n) = poly(n)? In other words, is there a language $L \in DTIME(poly(n))$ that is $(2^{\delta n}, 2^{-\delta n})$ -hard? We know that $P \subset P/poly$, so there are no languages in P that cannot be approximated by an exponential sized circuit. Instead, we assume $T(n) = 2^{O(n)}$. i.e. $L \in E$.

Now, set $k = \frac{n}{10 \log(n)}$. It follows that $m = n^{k+1} = 2^{\frac{\delta n}{10}} = 2^{\frac{\delta}{10}\sqrt{r}}$.

To conclude, if we are given a $L \in E$ that is $(2^{\delta n}, 2^{-\delta n})$ -hard, then we can produce a (S', ϵ') -PRG that takes in $r = n^2$ bits and outputs exponential bits, where $S' = 2^{\delta n} - 2^{\frac{\delta}{10}n} = \Omega(2^{\delta n})$ and $\epsilon' = 2^{\frac{\delta}{10}n}2^{-\delta n} \leq 2^{-\frac{\delta}{2}n}$. This implies any algorithm in BPP can be derandomized to a deterministic algorithm that runs in time $n^{O(\log n)}$. We note that one can construct better designs that will yield BPP=P under the circuit lower bound assumptions against E.

We now switch topics to a new type of proof system.

2 Interactive Proofs

2.1 NP

Now, let us revisit the setting of NP but through the lens of the verifier. Recall that NP is the set of decision problems verifiable by a deterministic Turing machine in polynomial time. An alternative way of viewing NP is as a simple interactive proof system, with a "prover" in addition to the verifier. On input x, the all-powerful prover P comes up with some certificate for x, a_1 , and sends it to the verifier V.

If $x \in L$, then some prover that can convince the verifier that x is in L. If $x \notin L$, then no prover can convince the verifier that x is in L. Formally, for $L \in NP, \exists V$ such that:

$$x \in L \Rightarrow \exists P \ s.t. \ V(x, a_1) = 1$$

 $x \notin L \Rightarrow \forall P, \ V(x, a_1) = 0$

2.2 Deterministic Interactive Proofs (dIP)

Now, let us define a proof system by extending the number of rounds of communication.

Definition 2.1. Define a complexity class dIP[k(n)] where n is the length of x, and k(n) is the number of rounds of communication between the prover and verifier.

[Note that all messages $a_1, a_2, \ldots, a_{k(n)}$ between prover and verifier are polynomial in the size of x]. Let $out_V \langle V, P \rangle(x)$ stand for the final output of the verifier. We now have: For $L \in dIP[k(n)], \exists V$ such that:

$$x \in L \Rightarrow \exists P \ s.t. \ out_V \langle V, P \rangle(x) = 1$$
$$x \notin L \Rightarrow \forall P, \ out_V \langle V, P \rangle(x) = 0$$

Definition 2.2. $dIP = \bigcup_{c \in \mathbb{N}} dIP[n^c]$

Claim 2.3. dIP = NP (Nothing is gained by allowing communication.)

Proof:

 $NP \subseteq dIP$ because NP = dIP[1].

 $dIP \subseteq NP$: Using dIP verifier V, construct NP verifier \tilde{V} : On input x and certificate $a_1, a_2, a_3, \ldots, a_{k(n)}, \tilde{V}$ checks that all odd numbered messages a_i are consistent with what V would output. In other words, \tilde{V} checks that $a_1 = V(x), a_3 = V(x, a_1, a_2), a_5 = V(x, a_1, a_2, a_3, a_4)$, and so on. If the odd numbered messages are consistent, then, \tilde{V} outputs $V(x, a_1, a_2, a_3, \ldots, a_{k(n)})$; If the odd numbered messages are not consistent, then \tilde{V} outputs 0. We can see that if V(x) = 1, then such a certificate consisting of the the messages would exist, and $\tilde{V}(x) = 1$.

So if deterministic interactive proofs don't work, what will?

2.3 (Probabilistic) Interactive Proofs

We modify the deterministic interactive proof system defined above:

L is in IP[k(n)] if $\exists V$ such that:

$$x \in L \Rightarrow \exists P \text{ s.t. } Pr[out_V \langle V, P \rangle(x) = 1] > \frac{2}{3} \qquad \text{(Completeness)}$$
$$x \notin L \Rightarrow \forall P, \ Pr[out_V \langle V, P \rangle(x) = 1] < \frac{1}{3} \qquad \text{(Soundness)}$$

Note that the randomness lies with the verifier and not the prover because there is always a best strategy for the prover to take to trick the verifier.

We note that the following is a landmark theorem in complexity theory.

Theorem 2.4. IP = PSPACE.

Subject to time constraints, we may see some part of the proof of the above theorem in a future lecture. For now, let us investigate the power of IP.

Definition 2.5. $GNI = \{ \langle G_0, G_1 \rangle : G_0 \not\approx G_1 \}$, where $G_0 \approx G_1$ if $\exists \pi : V \to V$ such that $\pi(G_0) = G_1$.

Claim 2.6. Graph Non-Isomorphism $(GNI) \in IP$

Algorithm:

On input of G_0, G_1, V flips a bit b, picks a random permutation π , and sends $\pi(G_b)$ to P. P then sends back b', representing whether it thinks that $G_b \approx G_0$ or $G_b \approx G_1$. Then, V accepts if b = b'.

To prove that this algorithm works, we consider its completeness and soundness. Completeness: First, suppose $G_0 \not\approx G_1$. Then, the prover can distinguish whether G_b is a permutation of G_0 or a permutation of G_1 and send the correct b' back. In this case, b' = b with probability 1 and Vwill always accept. Soundness: Now, suppose $G_0 \approx G_1$. In this case, the prover cannot distinguish whether G_b is a permutation of G_0 or G_1 since it is isomorphic to both, and can only guess. Thus, it sends back 0 or 1 with probability 0.5 each, so b' = b with probability 0.5. Although the 0.5 acceptance probability for isomorphic graphs falls below the $\frac{1}{3}$ bound, the algorithm can be repeated over and over again to drive the probability down. Thus, we have shown that $GNI \in IP$

Note that we have assumed that V's coins are unknown to P. This is called a private randomness setting. However, as we will see in the next lecture, this relaxing this assumption to a public randomness setting does not affect the proof.