1 Hard Function Implies PRG

Claim 1.1. Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is (S, ε)-hard. Then $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ defined as $G(x):=(x, f(x))$ is a $\left(S^{\prime}, \varepsilon^{\prime}\right)-P R G$, where $S^{\prime}=S-1$ and $\varepsilon^{\prime}=\varepsilon$.

Remark 1.2. One might question why we introduce a new variable ε^{\prime} in the claim. This claim is a particular case of a more general theorem where ε^{\prime} need not equal ε.

Proof of 1.1: We proceed by contradiction, that is, we assume there exists a distinguisher circuit D of size $\leq S^{\prime}$ such that

$$
|\operatorname{Pr}[D(x, f(x))=1]-\operatorname{Pr}[D(x, b)=1]|>\varepsilon^{\prime}
$$

where x is uniformly sampled from U_{n} and b is a random bit. Observe that by using law of total probability (and conditioning over whether or not $f(x)=b$ or $f(x)=\bar{b}$), the preceding condition is equivalent to

$$
|\operatorname{Pr}[D(x, f(x))=1]-\operatorname{Pr}[D(x, \overline{f(x)})=1]|>2 \varepsilon^{\prime}
$$

Next, consider the following randomized algorithm A with oracle access to D for computing f :

```
Algorithm 1 A
    Input: \(x\)
    Flip a fair coin \(b\)
    if \(D(x, b)=1\) then
        Output \(b\)
    else
        Output \(\bar{b}\)
    end if
```

We are interested in the probability that $A(x)=f(x)$. This event occurs either when $D(x, b)=$ $1 \wedge b=f(x)$ or when $D(x, b)=0 \wedge b=\overline{f(x)}$. Since b is equally likely to be $f(x)$ or $\overline{f(x)}$, we see that:

$$
\begin{aligned}
\operatorname{Pr}_{x \sim U_{n}}[A(x)=f(x)] & =\frac{1}{2}[\operatorname{Pr}[D(x, f(x))=1]+\operatorname{Pr}[D(x, \overline{f(x)})=0]] \\
& =\frac{1}{2}[\operatorname{Pr}[D(x, f(x))=1]+(1-\operatorname{Pr}[D(x, \overline{f(x)})=1])] \\
& \geq \frac{1}{2}+\varepsilon^{\prime}
\end{aligned}
$$

We now attempt to derandomize A by considering variants A_{1} and A_{0}, which are identical to A, except we manually set b to 1 and 0 , respectively. By the averaging principle, either $\operatorname{Pr}\left[A_{1}(x)=\right.$ $f(x)] \geq \frac{1}{2}+\varepsilon^{\prime}$ or $\operatorname{Pr}\left[A_{0}(x)=f(x)\right] \geq \frac{1}{2}+\varepsilon^{\prime}$ (if both inequalities were false, then there is no way the probability we derived above holds). We then give b as advice to A, where b is a bit such that
the algorithm $A_{b}(x)$ has non-negligible advantage at computing $f(x)$. It is important to note is that b is independent from x, so our advice stays constant despite x. Observe that A_{1} is directly computed by $D(x, 1)$, and A_{0} is directly computed by $\overline{D(x, 0)}$, which can be computed by attaching a not gate to the output of $D(x, 0)$. So we need a circuit of size at most $S^{\prime}+1=S$ to have at least an $\varepsilon^{\prime}=\varepsilon$ advantage in computing f, which breaks the assumption that f is (S, ε)-hard.

2 Towards a Better PRG

We will now perform a similar technique to construct a "better" PRG (one with longer stretch). This construction comes courtesy of Nisan and Wigderson.

Theorem 2.1. Suppose $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is (S, ε)-hard and we have an (n, k)-design over a universe $[r]=\{0,1, \ldots, r\}$ (defined below). Then there exists a $\left(S^{\prime}, \varepsilon^{\prime}\right)-P R G G:\{0,1\}^{r} \rightarrow\{0,1\}^{m}$, where $S^{\prime}=S-O\left(2^{k} m\right)$ and $\varepsilon^{\prime}=m \cdot \varepsilon$.

Definition 2.2. An (n, k)-design over a universe $[r]$ is a collection of sets $S_{1}, \ldots, S_{m} \subseteq[r]$, where $\forall i \in[m], \# S_{i}=n$ and $\forall i \neq j, \#\left(S_{i} \cap S_{j}\right) \leq k$. All of these sets can be assumed to have the elements arranged in ascending order. (Note this is an equivalent notion to a n-uniform undirected hypergraph with m hyperedges with nodes labelled by $[r]$, such that the intersection of any two distinct hyperedges has cardinality at most k).

Remark 2.3. We can think of r as being linear in n, and m as being exponential in n, which suggests that G has a very large stretch.

Proof of Theorem 2.1: Consider the following function G : upon input $z=b_{1} \circ b_{2} \circ \ldots \circ b_{r}$: The first bit of its output will be $f\left(b_{\ell_{1}} \circ b_{\ell_{2}} \circ \ldots \circ b_{\ell_{n}}\right)$, where $\left\{\ell_{1}, \ldots, \ell_{n}\right\}=S_{1}$. The i th bit of its output will be obtained by the analogous procedure on S_{i}. For notational convenience, given a set $S_{i}=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$, we write $\left.z\right|_{S_{i}}:=b_{i_{1}} \circ \ldots \circ b_{i_{n}}$. So we can equivalently define $G:=f\left(\left.z\right|_{S_{1}}\right) \circ f\left(\left.z\right|_{S_{2}}\right) \circ \ldots \circ f\left(\left.z\right|_{S_{m}}\right)$. We will show that G is our desired PRG via contradiction and hybrid argument. Suppose there exists a distinguisher circuit D of size $\leq S^{\prime}$ such that

$$
\left|\operatorname{Pr}_{z \sim\{0,1\}^{r}}[D(G(z))=1]-\operatorname{Pr}_{x \sim\{0,1\}^{m}}[D(x)=1]\right|>\varepsilon^{\prime}
$$

Now, we consider a series of strings (aka "hybrids") $H_{0}, H_{1}, \ldots H_{m}$, where $H_{0}=f\left(\left.z\right|_{S_{1}}\right) \circ f\left(\left.z\right|_{S_{2}}\right) \circ$ $\ldots \circ f\left(\left.z\right|_{S_{m}}\right)$ and $H_{m}=b_{1} \circ b_{2} \circ \ldots \circ b_{m}$. In general, H_{i} is an m bit string where the first i bits are sampled uniformly at random, and for all $i<j \leq m$, the j th bit of H_{i} is $f\left(\left.z\right|_{S_{j}}\right)$.

Observe that

$$
\left|\sum_{i=0}^{m-1} \operatorname{Pr}\left[D\left(H_{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{i+1}\right)=1\right]\right|>\varepsilon^{\prime}
$$

This can be verified by noting that the LHS is a telescoping sum where the only terms that survive are $\operatorname{Pr}\left[D\left(H_{0}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{m}\right)=1\right]$, which is just a reformulation of our original assumption. By Triangle Inequality, we have that

$$
\sum_{i=0}^{m-1}\left|\operatorname{Pr}\left[D\left(H_{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{i+1}\right)=1\right]\right|>\varepsilon^{\prime}
$$

By a simple argument by contradiction, we see this implies that there exists an i such that $\left|\operatorname{Pr}\left[D\left(H_{i}\right)=1\right]-\operatorname{Pr}\left[D\left(H_{i+1}\right)=1\right]\right|>\frac{\varepsilon^{\prime}}{m}$.

We now design a randomized algorithm B with oracle access to D for computing f. We start by designing the following algorithm B^{\prime}. Note that in addition to input string x, it is given a bit b^{\prime}, which is either the output of $f(x)$ or a random bit. In the second line, we sample a set of $r-n$ bits to occupy the bits of z that are not indexed by S_{i+1}. The third line inserts or "concatenates" (please excuse the gross abuse of notation) the bits of x into the n bits of z indexed by S_{i+1} :

```
Algorithm 2 B'
    Input: \(x, b^{\prime}\)
    Sample random bits \(b_{1}, \ldots, b_{i}\)
    Sample \(\left.z\right|_{\overline{S_{i+1}}}\)
    Set \(z=x\) "○" \(\left.z\right|_{\overline{S_{i+1}}}\)
    Set \(\mathrm{H}=b_{1} \circ \ldots \circ b_{i} \circ b^{\prime} \circ f\left(\left.z\right|_{S_{i+2}}\right) \circ \ldots \circ f\left(\left.z\right|_{S_{m}}\right)\)
    Output \(D(H)\)
```

Observe that if b^{\prime} is $f(x)$, then H is distributed like H_{i}, and if b^{\prime} is a random bit, then H is distributed like H_{i+1}. Thus, B^{\prime} has the property that

$$
\operatorname{Pr}\left[B^{\prime}(x, f(x))=1\right]-\operatorname{Pr}\left[B^{\prime}(x, b)=1\right] \geq \frac{\varepsilon^{\prime}}{m}
$$

(Note that we can get rid of the absolute value without loss of generality, because we could always flip the output of our distinguisher). In particular, because a random setting of $b_{1}, \ldots b_{i},\left.z\right|_{\overline{S_{i+1}}}$ has this advantage, by the averaging principle, there must be a specific setting of these bits that also achieves this advantage. We can give this setting as advice to our algorithm B^{\prime}, and again, it is important to note that this setting is independent from x. This immediately gives us an algorithm B that can compute $f(x)$ with non-negligible advantage - we can use a similar formulation as in Section 1, using our algorithm B^{\prime} as the distinguisher.

It remains to compute the size of a circuit for B (i.e. computing f). Naively, we would need at most m edges to feed in $b_{1}, \ldots b_{i}, b^{\prime}, f\left(\left.z\right|_{S_{i+2}}\right), \ldots, f\left(\left.z\right|_{S_{m}}\right)$ into D, but we run into trouble when we wish to compute $f\left(\left.z\right|_{S_{i+2}}\right), \ldots, f\left(\left.z\right|_{S_{m}}\right)$. At a cursory glance, it appears as though we need to use many circuits that compute f in order to compute f. However, we are saved by the fact that at most there are k bits of overlap between S_{i} and any other set S_{j} (these sets are part of a design). Because we are given $\left.z\right|_{\overline{S_{i+1}}}$, for any set S_{j}, at most k of its bits are not fixed (those that are in the intersection of S_{j} and $\left.S_{i}\right)$. Thus, we just need a circuit of size 2^{k} to compute $f\left(\left.z\right|_{S_{j}}\right)$ for any $j \neq i$. In reality, we just need $O\left(m 2^{k}\right)$ edges to feed in the input to our distinguisher circuit, which itself uses S^{\prime} edges. This breaks the assumption that f is (S, ε)-hard.

In the next class, we show how to construct our designs and how to set our parameters to show that $\mathrm{BPP}=\mathrm{P}$ under reasonable assumptions on circuit lower bounds.

