
CS 6810: Theory of Computing Fall 2023

Lecture 21: Nov 2, 2023

Lecturer: Eshan Chattopadhyay Scribe: Jiho Cha

1 Hard Function Implies PRG

Claim 1.1. Suppose f : {0, 1}n → {0, 1} is (S, ε)-hard. Then G : {0, 1}n → {0, 1}n+1 defined as
G(x) := (x, f(x)) is a (S′, ε′)-PRG, where S′ = S − 1 and ε′ = ε.

Remark 1.2. One might question why we introduce a new variable ε′ in the claim. This claim is
a particular case of a more general theorem where ε′ need not equal ε.

Proof of 1.1: We proceed by contradiction, that is, we assume there exists a distinguisher circuit
D of size ≤ S′ such that

|Pr[D(x, f(x)) = 1]− Pr[D(x, b) = 1]| > ε′

where x is uniformly sampled from Un and b is a random bit. Observe that by using law of total
probability (and conditioning over whether or not f(x) = b or f(x) = b), the preceding condition
is equivalent to

|Pr[D(x, f(x)) = 1]− Pr[D(x, f(x)) = 1]| > 2ε′

Next, consider the following randomized algorithm A with oracle access to D for computing f :

Algorithm 1 A

Input: x

1: Flip a fair coin b
2: if D(x, b) = 1 then
3: Output b
4: else
5: Output b
6: end if

We are interested in the probability that A(x) = f(x). This event occurs either when D(x, b) =
1 ∧ b = f(x) or when D(x, b) = 0 ∧ b = f(x). Since b is equally likely to be f(x) or f(x), we see
that:

Pr
x∼Un

[A(x) = f(x)] =
1

2

[
Pr[D(x, f(x)) = 1] + Pr[D(x, f(x)) = 0]

]
=

1

2

[
Pr[D(x, f(x)) = 1] + (1− Pr[D(x, f(x)) = 1])

]
≥ 1

2
+ ε′.

We now attempt to derandomize A by considering variants A1 and A0, which are identical to
A, except we manually set b to 1 and 0, respectively. By the averaging principle, either Pr[A1(x) =
f(x)] ≥ 1

2 + ε′ or Pr[A0(x) = f(x)] ≥ 1
2 + ε′ (if both inequalities were false, then there is no way

the probability we derived above holds). We then give b as advice to A, where b is a bit such that

1

Lecture 21: Nov 2, 2023 2

the algorithm Ab(x) has non-negligible advantage at computing f(x). It is important to note is
that b is independent from x, so our advice stays constant despite x. Observe that A1 is directly
computed by D(x, 1), and A0 is directly computed by D(x, 0), which can be computed by attaching
a not gate to the output of D(x, 0). So we need a circuit of size at most S′+1 = S to have at least
an ε′ = ε advantage in computing f , which breaks the assumption that f is (S, ε)-hard.

2 Towards a Better PRG

We will now perform a similar technique to construct a “better” PRG (one with longer stretch).
This construction comes courtesy of Nisan and Wigderson.

Theorem 2.1. Suppose f : {0, 1}n → {0, 1} is (S, ε)-hard and we have an (n, k)-design over a
universe [r] = {0, 1, ..., r} (defined below). Then there exists a (S′, ε′)-PRG G : {0, 1}r → {0, 1}m,
where S′ = S −O(2km) and ε′ = m · ε.

Definition 2.2. An (n, k)-design over a universe [r] is a collection of sets S1, ..., Sm ⊆ [r], where
∀i ∈ [m],#Si = n and ∀i ̸= j,#(Si ∩ Sj) ≤ k. All of these sets can be assumed to have the
elements arranged in ascending order. (Note this is an equivalent notion to a n-uniform undirected
hypergraph with m hyperedges with nodes labelled by [r], such that the intersection of any two distinct
hyperedges has cardinality at most k).

Remark 2.3. We can think of r as being linear in n, and m as being exponential in n, which
suggests that G has a very large stretch.

Proof of Theorem 2.1: Consider the following function G: upon input z = b1 ◦ b2 ◦ ... ◦ br:
The first bit of its output will be f(bℓ1 ◦ bℓ2 ◦ ... ◦ bℓn), where {ℓ1, ..., ℓn} = S1. The ith bit
of its output will be obtained by the analogous procedure on Si. For notational convenience,
given a set Si = {i1, i2, ..., in}, we write z|Si := bi1 ◦ ... ◦ bin . So we can equivalently define
G := f(z|S1) ◦ f(z|S2) ◦ ... ◦ f(z|Sm). We will show that G is our desired PRG via contradiction and
hybrid argument. Suppose there exists a distinguisher circuit D of size ≤ S′ such that∣∣∣ Pr

z∼{0,1}r
[D(G(z)) = 1]− Pr

x∼{0,1}m
[D(x) = 1]

∣∣∣ > ε′.

Now, we consider a series of strings (aka “hybrids”) H0, H1, ...Hm, where H0 = f(z|S1) ◦ f(z|S2) ◦
... ◦ f(z|Sm) and Hm = b1 ◦ b2 ◦ ... ◦ bm. In general, Hi is an m bit string where the first i bits are
sampled uniformly at random, and for all i < j ≤ m, the jth bit of Hi is f(z|Sj).

Observe that ∣∣∣m−1∑
i=0

Pr[D(Hi) = 1]− Pr[D(Hi+1) = 1]
∣∣∣ > ε′.

This can be verified by noting that the LHS is a telescoping sum where the only terms that survive
are Pr[D(H0) = 1]− Pr[D(Hm) = 1], which is just a reformulation of our original assumption. By
Triangle Inequality, we have that

m−1∑
i=0

∣∣∣Pr[D(Hi) = 1]− Pr[D(Hi+1) = 1]
∣∣∣ > ε′.

By a simple argument by contradiction, we see this implies that there exists an i such that∣∣∣Pr[D(Hi) = 1]− Pr[D(Hi+1) = 1]
∣∣∣ > ε′

m .

Lecture 21: Nov 2, 2023 3

We now design a randomized algorithm B with oracle access to D for computing f . We start
by designing the following algorithm B′. Note that in addition to input string x, it is given a bit
b′, which is either the output of f(x) or a random bit. In the second line, we sample a set of r− n
bits to occupy the bits of z that are not indexed by Si+1. The third line inserts or “concatenates”
(please excuse the gross abuse of notation) the bits of x into the n bits of z indexed by Si+1:

Algorithm 2 B’

Input: x, b′

1: Sample random bits b1, ..., bi
2: Sample z|Si+1

3: Set z = x “ ◦ ” z|Si+1

4: Set H = b1 ◦ ... ◦ bi ◦ b′ ◦ f(z|Si+2) ◦ ... ◦ f(z|Sm)
5: Output D(H)

Observe that if b′ is f(x), then H is distributed like Hi, and if b′ is a random bit, then H is
distributed like Hi+1. Thus, B

′ has the property that

Pr[B′(x, f(x)) = 1]− Pr[B′(x, b) = 1] ≥ ε′

m
.

(Note that we can get rid of the absolute value without loss of generality, because we could al-
ways flip the output of our distinguisher). In particular, because a random setting of b1, ...bi, z|Si+1

has this advantage, by the averaging principle, there must be a specific setting of these bits that
also achieves this advantage. We can give this setting as advice to our algorithm B′, and again, it is
important to note that this setting is independent from x. This immediately gives us an algorithm
B that can compute f(x) with non-negligible advantage - we can use a similar formulation as in
Section 1, using our algorithm B′ as the distinguisher.

It remains to compute the size of a circuit for B (i.e. computing f). Naively, we would need at
most m edges to feed in b1, ...bi, b

′, f(z|Si+2), ..., f(z|Sm) into D, but we run into trouble when we
wish to compute f(z|Si+2), ..., f(z|Sm). At a cursory glance, it appears as though we need to use
many circuits that compute f in order to compute f . However, we are saved by the fact that at
most there are k bits of overlap between Si and any other set Sj (these sets are part of a design).
Because we are given z|Si+1

, for any set Sj , at most k of its bits are not fixed (those that are in the

intersection of Sj and Si). Thus, we just need a circuit of size 2k to compute f(z|Sj) for any j ̸= i.

In reality, we just need O(m2k) edges to feed in the input to our distinguisher circuit, which itself
uses S′ edges. This breaks the assumption that f is (S, ε)-hard.

In the next class, we show how to construct our designs and how to set our parameters to show
that BPP=P under reasonable assumptions on circuit lower bounds.

	Hard Function Implies PRG
	Towards a Better PRG

