CS 6810: Theory of Computing

Lecture 20: Oct 31, 2023

Lecturer: Eshan Chattopadhyay

In this lecture, we will see connections between hard functions (with respect to non-uniform machines) and pseudorandom generators (PRG) (with respect to non-uniform machines). Finally,

we will show that the existence of a "dream" PRG implies that $\mathsf{BPP} = \mathsf{P}$. For any $n \in \mathbb{N}$, let \mathcal{U}_n denote the uniform distribution over $\{0,1\}^n$.

1 Definitions

We start by introducing what it means for a function to be hard. Roughly speaking, if a function f is (S, ε) -hard, then no S-size circuit can compute f with probability $\geq 1/2 + \varepsilon$. We also consider worst-case hardness where we only require each circuit fails to compute f on some input.

Definition 1.1. Let $f : \{0,1\}^n \to \{0,1\}$ be a function. We say that f is (S,ε) -hard if for every circuit C of size $\leq S$, it holds that

$$\Pr[x \leftarrow \{0,1\}^n : C(x) = f(x)] < \frac{1}{2} + \varepsilon$$

We simply say that f is S-hard if the above probability is < 1.

We proceed to defining pseudorandom generators (PRG). Roughly speaking, a function g is a (S, ε) -PRG if no S-size circuit can distinguish between the output of PRG and the uniform distribution with advantage $\geq \varepsilon$.

Definition 1.2. Let $g: \{0,1\}^{s(n,\varepsilon)} \to \{0,1\}^n$ be a function. We say that g is a (S,ε) -pseudorandom generator $((S,\varepsilon)$ -PRG) if for every circuit C of size $\leq S$, it holds that

$$|\Pr[x \leftarrow \{0,1\}^{s(n,\varepsilon)} : C(g(x)) = 1] - \Pr[r \leftarrow \{0,1\}^n : C(r) = 1]| < \varepsilon$$

Remark 1.3. In the above definitions, we only consider functions defined over a specific input length. We can also consider functions $f = \{f_n\}_{n \in \mathbb{N}}$ defined over all input lengths, and we say that f is a $(S(\cdot), \varepsilon(\cdot))$ -hard function (resp $(S(\cdot), \varepsilon(\cdot))$ -PRG) if it is $(S(n), \varepsilon(n))$ -hard (resp $(S(n), \varepsilon(n))$ pseudorandom) for all sufficiently large $n \in \mathbb{N}$.

2 Hardness from Pseudorandomness

We will show that we can get a hard function from any PRG $g: \{0,1\}^{n-1} \to \{0,1\}^n$. We consider the function $f: \{0,1\}^n \to \{0,1\}$ defined as f(x) = 1 iff $\exists y \in \{0,1\}^{n-1}$, x = g(y).

Lemma 2.1. Assume that $g: \{0,1\}^{n-1} \to \{0,1\}^n$ be an $(S,1/2-\delta)$ -PRG for some $\delta > 0$. It holds that f is S-hard.

Proof. Assume for the sake of contradiction that f is not S-hard; i.e., there exists a circuit C of size S that computes the function f. We will show that the circuit C will distinguish between the output of g and the uniform distribution with advantage $\geq 1/2$, which contradicts to the $(S, 1/2 - \delta)$ -pseudorandomness of g. Observe that $\Pr[C(g(\mathcal{U}_{n-1})) = 1] = 1$ since C computes f and

Fall 2023

Scribe: Yanyi Liu

f will output 1 if the input is in the range of g. On the other hand, $\Pr[C(\mathcal{U}_n) = 1] \leq 1/2$ since the PRG g can output at most 2^{n-1} strings which can occupy at most a 1/2 fraction of n-bit strings. Taken together, it follows that

$$\Pr[C(g(\mathcal{U}_{n-1})) = 1] - \Pr[C(\mathcal{U}_n) = 1]| \ge 1/2$$

which concludes our proof.

3 Pseudorandomness from Average-Case Hardness

We move on to show that we can obtain a PRG from average-case hard functions. For any function $f: \{0,1\}^n \to \{0,1\}$, define $g: \{0,1\}^n \to \{0,1\}^{n+1}$ as

$$g(x) = (x, f(x))$$

where g outputs x concatenated with f(x).

We turn to proving that g is indeed a PRG. The proof uses essentially the same idea as in Yao's indistinguishibility vs. unpredictability Theorem.

Lemma 3.1. Assume that f is (S, ε) -hard. It holds that g is a $(S - 1, \varepsilon)$ -PRG.

Proof. Suppose for contradiction that there exists circuit C' of size $\leq S - 1$ such that

$$|\Pr[C'(g(\mathcal{U}_n)) = 1] - \Pr[C'(\mathcal{U}_{n+1}) = 1]| \ge \varepsilon$$

It follows that there exists a circuit $C \in \{C', C' \oplus 1\}$ such that

$$\Pr[C(g(\mathcal{U}_n)) = 1] - \Pr[C(\mathcal{U}_{n+1}) = 1] \ge \varepsilon$$

and we consider the circuit C.

We will show that the circuit C will output 1 with higher probability when the input is sampled from $(x, f(x)), x \leftarrow \mathcal{U}_n$ than $(x, f(x) \oplus 1), x \leftarrow \mathcal{U}_n$. Observe that

$$\Pr[x \leftarrow \mathcal{U}_n : C(x, f(x)) = 1] - \Pr[x \leftarrow \mathcal{U}_n : C(x, f(x) \oplus 1) = 1]$$

=
$$\Pr[C(\mathcal{U}_n, f(\mathcal{U}_n)) = 1] - \Pr[C(\mathcal{U}_n, f(\mathcal{U}_n) \oplus 1) = 1]$$

=
$$2\Pr[C(\mathcal{U}_n, f(\mathcal{U}_n)) = 1] - (\Pr[C(\mathcal{U}_n, f(\mathcal{U}_n)) = 1] + \Pr[C(\mathcal{U}_n, f(\mathcal{U}_n) \oplus 1) = 1])$$

=
$$2\Pr[C(g(\mathcal{U}_n)) = 1] - 2\Pr[C(\mathcal{U}_{n+1}) = 1]$$

>
$$2\varepsilon$$

Therefore, we can use the circuit C to compute the function f. Consider the following randomized algorithm A: On input x, toss a random coin $b \leftarrow \{0,1\}$, and output b if C(x,b) = 1 (since b is more "likely" to be f(x)); otherwise output $b \oplus 1$. In other words, $A_b(x) = C(x,b) \oplus b \oplus 1$ where $b \leftarrow \{0,1\}$.

We proceed to showing that A computes f with probability $\frac{1}{2} + \varepsilon$. Note that

$$\Pr[x \leftarrow \mathcal{U}_n, b \leftarrow \{0, 1\} : A_b(x) = f(x)]$$

$$= \Pr[x \leftarrow \mathcal{U}_n, b \leftarrow \{0, 1\} : b = f(x)] \Pr[x \leftarrow \mathcal{U}_n, b \leftarrow \{0, 1\} : A_b(x) = f(x) \mid b = f(x)]$$

$$+ \Pr[x \leftarrow \mathcal{U}_n, b \leftarrow \{0, 1\} : b = f(x) \oplus 1] \Pr[x \leftarrow \mathcal{U}_n, b \leftarrow \{0, 1\} : A_b(x) = f(x) \mid b = f(x) \oplus 1]$$

$$= \frac{1}{2} \Pr[x \leftarrow \mathcal{U}_n : C(x, f(x)) = 1] + \frac{1}{2} \Pr[x \leftarrow \mathcal{U}_n : C(x, f(x) \oplus 1) = 0]$$

$$= \frac{1}{2} \Pr[x \leftarrow \mathcal{U}_n : C(x, f(x)) = 1] + \frac{1}{2} (1 - \Pr[x \leftarrow \mathcal{U}_n : C(x, f(x) \oplus 1) = 1])$$

$$\geq \frac{1}{2} + \varepsilon$$

Finally, it remains to show that A can be implemented by a circuit of size S. Since A_b computes f with probability at least $\frac{1}{2} + \varepsilon$ over a random choice of $b \in \{0, 1\}$, it follows that there exists $b_0 \in \{0, 1\}$ such that A_{b_0} computes f with probability $\geq \frac{1}{2} + \varepsilon$. Recall that $A_{b_0}(x) = C(x, b_0) \oplus b_0 \oplus 1$, and notice that the operator $\oplus 1$ can be implemented by adding a NOT gate in the end of the circuit. It follows that A_{b_0} is just C' with the last input fixed to b_0 , and with (or without) a NOT gate in the end (depending on the value of b_0 and which of $\{C', C' \oplus 1\}$ C is), where the circuit size is increased by at most 1.

4 Derandomization from PRGs

Finally, we show that $\mathsf{BPP} = \mathsf{P}$ if there exists a (O(n), 1/6)-PRG $g : \{0, 1\}^{O(\log n)} \to \{0, 1\}^n$ computable in time $\mathsf{poly}(n)$.

Lemma 4.1. Assume that there exists a (O(n), 1/6)-PRG $g : \{0, 1\}^{O(\log n)} \to \{0, 1\}^n$ where g (on input of length $O(\log n)$) is computable in time $d(n) \in \mathsf{poly}(n)$. Then, $\mathsf{BPP} = \mathsf{P}$.

Proof. For any $L \in \mathsf{BPP}$, let M be the poly-time probabilistic machine such that M(x, r) decides L on instance x using random tape r. Let t(n) denote the running time of M on instance $x \in \{0, 1\}^n$, and we can without loss of generality assume that |r| = t(|x|).

We will give a deterministic poly-time machine A such that A decides L. Roughly speaking, A will replace the random tape r of M by the output of g, and the average can now be computed using brute-force since the seed length to g is only logarithmic in its output length. Our machine A, on input $x \in \{0,1\}^n$, enumerates all possible $s \in \{0,1\}^{O(\log t(n))}$, and outputs the majority of M(x,g(s)) for all s (where |g(s)| = t(|x|)). Notice that A runs in time $2^{O(\log t(n))}(d(n) + t(n)) \in$ poly(n) time.

We turn to arguing that for every $n \in \mathbb{N}$, $x \in \{0,1\}^n$, A(x) = L(x). Consider the circuit C(r) defined as C(r) = M(x, r). Since g is a PRG, it follows that

$$|\Pr[s \leftarrow \{0,1\}^{O(\log t(n))} : C(g(s)) = 1] - \Pr[r \leftarrow \{0,1\}^{t(n)} : C(r) = 1]| < \frac{1}{6}$$

Therefore, it follows that A(x) will output 1 if $\Pr_r[M(x,r)=1] \ge \frac{2}{3}$, or output 0 if $\Pr_r[M(x,r)=0] \ge \frac{2}{3}$ which concludes our proof.