
CS 6810: Theory of Computing Fall 2023

Lecture 20: Oct 31, 2023

Lecturer: Eshan Chattopadhyay Scribe: Yanyi Liu

In this lecture, we will see connections between hard functions (with respect to non-uniform
machines) and pseudorandom generators (PRG) (with respect to non-uniform machines). Finally,
we will show that the existence of a “dream” PRG implies that BPP = P.

For any n ∈ N, let Un denote the uniform distribution over {0, 1}n.

1 Definitions

We start by introducing what it means for a function to be hard. Roughly speaking, if a function
f is (S, ε)-hard, then no S-size circuit can compute f with probability ≥ 1/2+ ε. We also consider
worst-case hardness where we only require each circuit fails to compute f on some input.

Definition 1.1. Let f : {0, 1}n → {0, 1} be a function. We say that f is (S, ε)-hard if for every
circuit C of size ≤ S, it holds that

Pr[x← {0, 1}n : C(x) = f(x)] <
1

2
+ ε

We simply say that f is S-hard if the above probability is < 1.

We proceed to defining pseudorandom generators (PRG). Roughly speaking, a function g is
a (S, ε)-PRG if no S-size circuit can distinguish between the output of PRG and the uniform
distribution with advantage ≥ ε.

Definition 1.2. Let g : {0, 1}s(n,ε) → {0, 1}n be a function. We say that g is a (S, ε)-pseudorandom
generator ((S, ε)-PRG) if for every circuit C of size ≤ S, it holds that

|Pr[x← {0, 1}s(n,ε) : C(g(x)) = 1]− Pr[r ← {0, 1}n : C(r) = 1]| < ε

Remark 1.3. In the above definitions, we only consider functions defined over a specific input
length. We can also consider functions f = {fn}n∈N defined over all input lengths, and we say that
f is a (S(·), ε(·))-hard function (resp (S(·), ε(·))-PRG) if it is (S(n), ε(n))-hard (resp (S(n), ε(n))-
pseudorandom) for all sufficiently large n ∈ N.

2 Hardness from Pseudorandomness

We will show that we can get a hard function from any PRG g : {0, 1}n−1 → {0, 1}n. We consider
the function f : {0, 1}n → {0, 1} defined as f(x) = 1 iff ∃y ∈ {0, 1}n−1, x = g(y).

Lemma 2.1. Assume that g : {0, 1}n−1 → {0, 1}n be an (S, 1/2− δ)-PRG for some δ > 0. It holds
that f is S-hard.

Proof. Assume for the sake of contradiction that f is not S-hard; i.e., there exists a circuit C of
size S that computes the function f . We will show that the circuit C will distinguish between
the output of g and the uniform distribution with advantage ≥ 1/2, which contradicts to the
(S, 1/2− δ)-pseudorandomness of g. Observe that Pr[C(g(Un−1)) = 1] = 1 since C computes f and

1

Lecture 20: Oct 31, 2023 2

f will output 1 if the input is in the range of g. On the other hand, Pr[C(Un) = 1] ≤ 1/2 since the
PRG g can output at most 2n−1 strings which can occupy at most a 1/2 fraction of n-bit strings.
Taken together, it follows that

|Pr[C(g(Un−1)) = 1]− Pr[C(Un) = 1]| ≥ 1/2

which concludes our proof.

3 Pseudorandomness from Average-Case Hardness

We move on to show that we can obtain a PRG from average-case hard functions. For any function
f : {0, 1}n → {0, 1}, define g : {0, 1}n → {0, 1}n+1 as

g(x) = (x, f(x))

where g outputs x concatenated with f(x).
We turn to proving that g is indeed a PRG. The proof uses essentially the same idea as in Yao’s

indistinguishibility vs. unpredictability Theorem.

Lemma 3.1. Assume that f is (S, ε)-hard. It holds that g is a (S − 1, ε)-PRG.

Proof. Suppose for contradiction that there exists circuit C ′ of size ≤ S − 1 such that

|Pr[C ′(g(Un)) = 1]− Pr[C ′(Un+1) = 1]| ≥ ε

It follows that there exists a circuit C ∈ {C ′, C ′ ⊕ 1} such that

Pr[C(g(Un)) = 1]− Pr[C(Un+1) = 1] ≥ ε

and we consider the circuit C.
We will show that the circuit C will output 1 with higher probability when the input is sampled

from (x, f(x)), x← Un than (x, f(x)⊕ 1), x← Un. Observe that

Pr[x← Un : C(x, f(x)) = 1]− Pr[x← Un : C(x, f(x)⊕ 1) = 1]

= Pr[C(Un, f(Un)) = 1]− Pr[C(Un, f(Un)⊕ 1) = 1]

= 2Pr[C(Un, f(Un)) = 1]− (Pr[C(Un, f(Un)) = 1] + Pr[C(Un, f(Un)⊕ 1) = 1])

= 2Pr[C(g(Un)) = 1]− 2Pr[C(Un+1) = 1]

≥ 2ε

Therefore, we can use the circuit C to compute the function f . Consider the following randomized
algorithm A: On input x, toss a random coin b ← {0, 1}, and output b if C(x, b) = 1 (since b is
more “likely” to be f(x)); otherwise output b ⊕ 1. In other words, Ab(x) = C(x, b) ⊕ b ⊕ 1 where
b← {0, 1}.

We proceed to showing that A computes f with probability 1
2 + ε. Note that

Pr[x← Un, b← {0, 1} : Ab(x) = f(x)]

= Pr[x← Un, b← {0, 1} : b = f(x)] Pr[x← Un, b← {0, 1} : Ab(x) = f(x) | b = f(x)]

+ Pr[x← Un, b← {0, 1} : b = f(x)⊕ 1] Pr[x← Un, b← {0, 1} : Ab(x) = f(x) | b = f(x)⊕ 1]

=
1

2
Pr[x← Un : C(x, f(x)) = 1] +

1

2
Pr[x← Un : C(x, f(x)⊕ 1) = 0]

=
1

2
Pr[x← Un : C(x, f(x)) = 1] +

1

2
(1− Pr[x← Un : C(x, f(x)⊕ 1) = 1])

≥ 1

2
+ ε

Lecture 20: Oct 31, 2023 3

Finally, it remains to show that A can be implemented by a circuit of size S. Since Ab computes
f with probability at least 1

2 + ε over a random choice of b ∈ {0, 1}, it follows that there exists
b0 ∈ {0, 1} such that Ab0 computes f with probability ≥ 1

2+ε. Recall that Ab0(x) = C(x, b0)⊕b0⊕1,
and notice that the operator ⊕1 can be implemented by adding a NOT gate in the end of the circuit.
It follows that Ab0 is just C ′ with the last input fixed to b0, and with (or without) a NOT gate
in the end (depending on the value of b0 and which of {C ′, C ′ ⊕ 1} C is), where the circuit size is
increased by at most 1.

4 Derandomization from PRGs

Finally, we show that BPP = P if there exists a (O(n), 1/6)-PRG g : {0, 1}O(logn) → {0, 1}n
computable in time poly(n).

Lemma 4.1. Assume that there exists a (O(n), 1/6)-PRG g : {0, 1}O(logn) → {0, 1}n where g (on
input of length O(log n)) is computable in time d(n) ∈ poly(n). Then, BPP = P.

Proof. For any L ∈ BPP, let M be the poly-time probabilistic machine such that M(x, r) decides L
on instance x using random tape r. Let t(n) denote the running time of M on instance x ∈ {0, 1}n,
and we can without loss of generality assume that |r| = t(|x|).

We will give a deterministic poly-time machine A such that A decides L. Roughly speaking,
A will replace the random tape r of M by the output of g, and the average can now be computed
using brute-force since the seed length to g is only logarithmic in its output length. Our machine
A, on input x ∈ {0, 1}n, enumerates all possible s ∈ {0, 1}O(log t(n)), and outputs the majority of
M(x, g(s)) for all s (where |g(s)| = t(|x|)). Notice that A runs in time 2O(log t(n))(d(n) + t(n)) ∈
poly(n) time.

We turn to arguing that for every n ∈ N, x ∈ {0, 1}n, A(x) = L(x). Consider the circuit C(r)
defined as C(r) = M(x, r). Since g is a PRG, it follows that

|Pr[s← {0, 1}O(log t(n)) : C(g(s)) = 1]− Pr[r ← {0, 1}t(n) : C(r) = 1]| < 1

6

Therefore, it follows that A(x) will output 1 if Prr[M(x, r) = 1] ≥ 2
3 , or output 0 if Prr[M(x, r) =

0] ≥ 2
3 which concludes our proof.

	Definitions
	Hardness from Pseudorandomness
	Pseudorandomness from Average-Case Hardness
	Derandomization from PRGs

