CS 6810: Theory of Computing

Fall 2023
Lecture 20: Oct 31, 2023
Lecturer: Eshan Chattopadhyay
Scribe: Yanyi Liu

In this lecture, we will see connections between hard functions (with respect to non-uniform machines) and pseudorandom generators (PRG) (with respect to non-uniform machines). Finally, we will show that the existence of a "dream" PRG implies that BPP $=P$.

For any $n \in \mathbb{N}$, let \mathcal{U}_{n} denote the uniform distribution over $\{0,1\}^{n}$.

1 Definitions

We start by introducing what it means for a function to be hard. Roughly speaking, if a function f is (S, ε)-hard, then no S-size circuit can compute f with probability $\geq 1 / 2+\varepsilon$. We also consider worst-case hardness where we only require each circuit fails to compute f on some input.

Definition 1.1. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}$ be a function. We say that f is (S, ε)-hard if for every circuit C of size $\leq S$, it holds that

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n}: C(x)=f(x)\right]<\frac{1}{2}+\varepsilon
$$

We simply say that f is S-hard if the above probability is <1.
We proceed to defining pseudorandom generators (PRG). Roughly speaking, a function g is a (S, ε)-PRG if no S-size circuit can distinguish between the output of PRG and the uniform distribution with advantage $\geq \varepsilon$.

Definition 1.2. Let $g:\{0,1\}^{s(n, \varepsilon)} \rightarrow\{0,1\}^{n}$ be a function. We say that g is a (S, ε)-pseudorandom generator $((S, \varepsilon)-P R G)$ if for every circuit C of size $\leq S$, it holds that

$$
\left|\operatorname{Pr}\left[x \leftarrow\{0,1\}^{s(n, \varepsilon)}: C(g(x))=1\right]-\operatorname{Pr}\left[r \leftarrow\{0,1\}^{n}: C(r)=1\right]\right|<\varepsilon
$$

Remark 1.3. In the above definitions, we only consider functions defined over a specific input length. We can also consider functions $f=\left\{f_{n}\right\}_{n \in \mathbb{N}}$ defined over all input lengths, and we say that f is a $(S(\cdot), \varepsilon(\cdot))$-hard function (resp $(S(\cdot), \varepsilon(\cdot))-P R G)$ if it is $(S(n), \varepsilon(n))$-hard (resp $(S(n), \varepsilon(n))$ pseudorandom) for all sufficiently large $n \in \mathbb{N}$.

2 Hardness from Pseudorandomness

We will show that we can get a hard function from any PRG $g:\{0,1\}^{n-1} \rightarrow\{0,1\}^{n}$. We consider the function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ defined as $f(x)=1$ iff $\exists y \in\{0,1\}^{n-1}, x=g(y)$.

Lemma 2.1. Assume that $g:\{0,1\}^{n-1} \rightarrow\{0,1\}^{n}$ be an $(S, 1 / 2-\delta)-P R G$ for some $\delta>0$. It holds that f is S-hard.

Proof. Assume for the sake of contradiction that f is not S-hard; i.e., there exists a circuit C of size S that computes the function f. We will show that the circuit C will distinguish between the output of g and the uniform distribution with advantage $\geq 1 / 2$, which contradicts to the $(S, 1 / 2-\delta)$-pseudorandomness of g. Observe that $\operatorname{Pr}\left[C\left(g\left(\mathcal{U}_{n-1}\right)\right)=1\right]=1$ since C computes f and
f will output 1 if the input is in the range of g. On the other hand, $\operatorname{Pr}\left[C\left(\mathcal{U}_{n}\right)=1\right] \leq 1 / 2$ since the PRG g can output at most 2^{n-1} strings which can occupy at most a $1 / 2$ fraction of n-bit strings. Taken together, it follows that

$$
\left|\operatorname{Pr}\left[C\left(g\left(\mathcal{U}_{n-1}\right)\right)=1\right]-\operatorname{Pr}\left[C\left(\mathcal{U}_{n}\right)=1\right]\right| \geq 1 / 2
$$

which concludes our proof.

3 Pseudorandomness from Average-Case Hardness

We move on to show that we can obtain a PRG from average-case hard functions. For any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, define $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ as

$$
g(x)=(x, f(x))
$$

where g outputs x concatenated with $f(x)$.
We turn to proving that g is indeed a PRG. The proof uses essentially the same idea as in Yao's indistinguishibility vs. unpredictability Theorem.
Lemma 3.1. Assume that f is (S, ε)-hard. It holds that g is a $(S-1, \varepsilon)-P R G$.
Proof. Suppose for contradiction that there exists circuit C^{\prime} of size $\leq S-1$ such that

$$
\left|\operatorname{Pr}\left[C^{\prime}\left(g\left(\mathcal{U}_{n}\right)\right)=1\right]-\operatorname{Pr}\left[C^{\prime}\left(\mathcal{U}_{n+1}\right)=1\right]\right| \geq \varepsilon
$$

It follows that there exists a circuit $C \in\left\{C^{\prime}, C^{\prime} \oplus 1\right\}$ such that

$$
\operatorname{Pr}\left[C\left(g\left(\mathcal{U}_{n}\right)\right)=1\right]-\operatorname{Pr}\left[C\left(\mathcal{U}_{n+1}\right)=1\right] \geq \varepsilon
$$

and we consider the circuit C.
We will show that the circuit C will output 1 with higher probability when the input is sampled from $(x, f(x)), x \leftarrow \mathcal{U}_{n}$ than $(x, f(x) \oplus 1), x \leftarrow \mathcal{U}_{n}$. Observe that

$$
\begin{aligned}
& \operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}: C(x, f(x))=1\right]-\operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}: C(x, f(x) \oplus 1)=1\right] \\
= & \operatorname{Pr}\left[C\left(\mathcal{U}_{n}, f\left(\mathcal{U}_{n}\right)\right)=1\right]-\operatorname{Pr}\left[C\left(\mathcal{U}_{n}, f\left(\mathcal{U}_{n}\right) \oplus 1\right)=1\right] \\
= & 2 \operatorname{Pr}\left[C\left(\mathcal{U}_{n}, f\left(\mathcal{U}_{n}\right)\right)=1\right]-\left(\operatorname{Pr}\left[C\left(\mathcal{U}_{n}, f\left(\mathcal{U}_{n}\right)\right)=1\right]+\operatorname{Pr}\left[C\left(\mathcal{U}_{n}, f\left(\mathcal{U}_{n}\right) \oplus 1\right)=1\right]\right) \\
= & 2 \operatorname{Pr}\left[C\left(g\left(\mathcal{U}_{n}\right)\right)=1\right]-2 \operatorname{Pr}\left[C\left(\mathcal{U}_{n+1}\right)=1\right] \\
\geq & 2 \varepsilon
\end{aligned}
$$

Therefore, we can use the circuit C to compute the function f. Consider the following randomized algorithm A : On input x, toss a random coin $b \leftarrow\{0,1\}$, and output b if $C(x, b)=1$ (since b is more "likely" to be $f(x)$); otherwise output $b \oplus 1$. In other words, $A_{b}(x)=C(x, b) \oplus b \oplus 1$ where $b \leftarrow\{0,1\}$.

We proceed to showing that A computes f with probability $\frac{1}{2}+\varepsilon$. Note that

$$
\begin{aligned}
& \operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}, b \leftarrow\{0,1\}: A_{b}(x)=f(x)\right] \\
= & \operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}, b \leftarrow\{0,1\}: b=f(x)\right] \operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}, b \leftarrow\{0,1\}: A_{b}(x)=f(x) \mid b=f(x)\right] \\
& +\operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}, b \leftarrow\{0,1\}: b=f(x) \oplus 1\right] \operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}, b \leftarrow\{0,1\}: A_{b}(x)=f(x) \mid b=f(x) \oplus 1\right] \\
= & \frac{1}{2} \operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}: C(x, f(x))=1\right]+\frac{1}{2} \operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}: C(x, f(x) \oplus 1)=0\right] \\
= & \frac{1}{2} \operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}: C(x, f(x))=1\right]+\frac{1}{2}\left(1-\operatorname{Pr}\left[x \leftarrow \mathcal{U}_{n}: C(x, f(x) \oplus 1)=1\right]\right) \\
\geq & \frac{1}{2}+\varepsilon
\end{aligned}
$$

Finally, it remains to show that A can be implemented by a circuit of size S. Since A_{b} computes f with probability at least $\frac{1}{2}+\varepsilon$ over a random choice of $b \in\{0,1\}$, it follows that there exists $b_{0} \in\{0,1\}$ such that $A_{b_{0}}$ computes f with probability $\geq \frac{1}{2}+\varepsilon$. Recall that $A_{b_{0}}(x)=C\left(x, b_{0}\right) \oplus b_{0} \oplus 1$, and notice that the operator $\oplus 1$ can be implemented by adding a NOT gate in the end of the circuit. It follows that $A_{b_{0}}$ is just C^{\prime} with the last input fixed to b_{0}, and with (or without) a NOT gate in the end (depending on the value of b_{0} and which of $\left\{C^{\prime}, C^{\prime} \oplus 1\right\} C$ is), where the circuit size is increased by at most 1 .

4 Derandomization from PRGs

Finally, we show that $\mathrm{BPP}=\mathrm{P}$ if there exists a $(O(n), 1 / 6)-\mathrm{PRG} g:\{0,1\}^{O(\log n)} \rightarrow\{0,1\}^{n}$ computable in time poly (n).
Lemma 4.1. Assume that there exists a $(O(n), 1 / 6)-P R G g:\{0,1\}^{O(\log n)} \rightarrow\{0,1\}^{n}$ where g (on input of length $O(\log n)$) is computable in time $d(n) \in \operatorname{poly}(n)$. Then, BPP $=\mathrm{P}$.

Proof. For any $L \in \mathrm{BPP}$, let M be the poly-time probabilistic machine such that $M(x, r)$ decides L on instance x using random tape r. Let $t(n)$ denote the running time of M on instance $x \in\{0,1\}^{n}$, and we can without loss of generality assume that $|r|=t(|x|)$.

We will give a deterministic poly-time machine A such that A decides L. Roughly speaking, A will replace the random tape r of M by the output of g, and the average can now be computed using brute-force since the seed length to g is only logarithmic in its output length. Our machine A, on input $x \in\{0,1\}^{n}$, enumerates all possible $s \in\{0,1\}^{O(\log t(n))}$, and outputs the majority of $M(x, g(s))$ for all $s($ where $|g(s)|=t(|x|))$. Notice that A runs in time $2^{O(\log t(n))}(d(n)+t(n)) \in$ poly (n) time.

We turn to arguing that for every $n \in \mathbb{N}, x \in\{0,1\}^{n}, A(x)=L(x)$. Consider the circuit $C(r)$ defined as $C(r)=M(x, r)$. Since g is a PRG, it follows that

$$
\left|\operatorname{Pr}\left[s \leftarrow\{0,1\}^{O(\log t(n))}: C(g(s))=1\right]-\operatorname{Pr}\left[r \leftarrow\{0,1\}^{t(n)}: C(r)=1\right]\right|<\frac{1}{6}
$$

Therefore, it follows that $A(x)$ will output 1 if $\operatorname{Pr}_{r}[M(x, r)=1] \geq \frac{2}{3}$, or output 0 if $\operatorname{Pr}_{r}[M(x, r)=$ $0] \geq \frac{2}{3}$ which concludes our proof.

