
CS 6810: Theory of Computing Fall 2023

Lecture 19: October 26, 2023

Lecturer: Eshan Chattopadhyay Scribe: Wayne Chen

Definition 0.1 (Bounded-Error Probabilistic Polynomial Time (BPP)). A language L ∈ BPP if
there is a probabilistic Turing Machine M that takes in random bitstrings r such that

∀x ∈ L,Pr[M(x, r) = L(x)] ≥ 2

3

where L(x) is 1 if x ∈ L and is 0 otherwise

1 Relations between complexity classes

Remark 1.1. P ⊆ BPP

For any language L ∈ P and the deterministic machine M that decides L, just augment M such
that it takes in an additional random string r, but ignores it during execution. Then M(x, r) = L(x)
always.

Remark 1.2. RP ⊆ NP

Consider any language L ∈ RP and the probabilistic RP machine M that decides L. For
any x ∈ L, there must be some r of poly(|x|) size such that M(x, r) = 1. Because M operates
deterministically given r and within poly(|x|) time, we can say r is a certificate for x ∈ L for the
verifier M . We know M is a correct verifier since if x 6∈ L, no such certificate exists.

Theorem 1.3. BPP ⊆ P/poly

We begin with a failed proof:

Failed proof attempt. Assuming L ∈ BPP, there is some poly-time machine M such that ∀x ∈
L,Pr[M(x, r) = L(x)] ≥ 2

3 . Recall P/poly is the set of languages that can be computed by machines

that take polysized advice strings. Thus we can try to define an advice TM M̃ that simulates M
on a ‘good random string r’ that is given as advice.

This fails since the advice string directly depends on x (it is not clear if the same random string
works for all inputs of a given length).

However, the above strategy can be easily fixed by defining BPP with a 1− 2−(|x|+1) threshold
(which is possible via error reduction) instead of a 2

3 threshold.

Proof. Define

BADx := {r : M(x, r) 6= L(x)}

From the threshold, we have for a random string r

∀x,Pr[r ∈ BADx] ≤ 2−(|x|+1)

1

Lecture 19: October 26, 2023 2

For x ∈ {0, 1}n, this means that

Pr[∃x, r ∈ BADx] ≤ 2n

2n+1
< 1

and there is some string r′ such that M(x, r′) = L(x) always. We simply pick M to be the
P/poly machine and r′ to be its advice.

Theorem 1.4. BPP ⊆ Σ2 ∩Π2

Proof. Let x ∈ {0, 1}n and define BPP using the same threshold as before. Define

1x := {r : M(x, r) = 1}
and shifts Vi ∈ {0, 1}n such that the set

1x + Vi := {x⊕ Vi : x ∈ 1x}
where ⊕ is an elementwise XOR. If x ∈ L, most r will result in M(x, r) = 1, and few shifts will

be required to cover {0, 1}n. If x 6∈ L, many shifts will be required to cover {0, 1}n. Specifically,
for x 6∈ L, |1x| ≤ 2−(|x|+1), so an exponential number of shifts are required.

We can encode this constraint as

x ∈ L ⇐⇒ ∃V1 . . . Vt, ∀y ∈ {0, 1}n, y ∈
t⋃

i=1

(1x + Vi)

Using the fact that a + b = c⇔ a = b + c in F2, this can be rewritten as

x ∈ L ⇐⇒ ∃V1 . . . Vt, ∀y ∈ {0, 1}n,
t∨

i=1

(y + Vi) ∈ 1x

which can also be rewritten as

x ∈ L ⇐⇒ ∃V1 . . . Vt, ∀y ∈ {0, 1}n,
t∨

i=1

M(x, y + Vi)

This can be translated into a polynomial sized boolean formula using Cook-Levin assuming t is
bounded by some polynomial of n. The only thing left to show is that we can have such a bound.
Consider if V1 . . . Vt are picked independently and at random. We want to bound the probability
that

∃y ∈ {0, 1}n,
t∧

i=1

(y + Vi) 6∈ 1x

For a fixed y, the probability that
∧t

i=1(y + Vi) 6∈ 1x is 2−t(n+1), by the BPP threshold and
independence. Hence, we have

∃y ∈ {0, 1}n,
t∧

i=1

(y + Vi) 6∈ 1x ≤
2n

2t(n+1)

and picking t = nc pushes this probability to 0 and gives us a poly(n) bound on t.

	Relations between complexity classes

