CS 6810: Theory of Computing Fall 2023

Lecture 19: October 26, 2023
Lecturer: Eshan Chattopadhyay Scribe: Wayne Chen

Definition 0.1 (Bounded-Error Probabilistic Polynomial Time (BPP)). A language L € BPP if
there is a probabilistic Turing Machine M that takes in random bitstrings r such that

2

Vo € L,Pr[M(x,r) = L(x)] > 3

where L(x) is 1 if z € L and is 0 otherwise

1 Relations between complexity classes

Remark 1.1. P C BPP

For any language L € P and the deterministic machine M that decides L, just augment M such
that it takes in an additional random string r, but ignores it during execution. Then M (z,r) = L(x)
always.

Remark 1.2. RP C NP

Consider any language L € RP and the probabilistic RP machine M that decides L. For
any © € L, there must be some r of poly(|z|) size such that M(x,r) = 1. Because M operates
deterministically given r and within poly(|z|) time, we can say 7 is a certificate for x € L for the
verifier M. We know M is a correct verifier since if © ¢ L, no such certificate exists.

Theorem 1.3. BPP C P/,
We begin with a failed proof:

Failed proof attempt. Assuming L. € BPP, there is some poly-time machine M such that Vz €
L,Pr[M(z,r) = L(x)] > % Recall P /.1, is the set of languages that can be computed by machines
that take polysized advice strings. Thus we can try to define an advice TM M that simulates M
on a ‘good random string r’ that is given as advice.

This fails since the advice string directly depends on z (it is not clear if the same random string

works for all inputs of a given length).
O]

However, the above strategy can be easily fixed by defining BPP with a 1 — 2~ (#/+1) threshold
(which is possible via error reduction) instead of a % threshold.

Proof. Define

BAD, = {r: M(z,r) # L(x)}

From the threshold, we have for a random string r

Va,Prlr € BAD,] < 9—(lz|+1)

Lecture 19: October 26, 2023 2

For z € {0,1}", this means that

2n
and there is some string 1’ such that M (z,r") = L(z) always. We simply pick M to be the
P /poly machine and ' to be its advice.
O

Theorem 1.4. BPP C X5 N1ls
Proof. Let x € {0,1}"™ and define BPP using the same threshold as before. Define

1, ={r: M(z,r) =1}
and shifts V; € {0,1}" such that the set

L+Vi={zaoV,:zel,}
where @ is an elementwise XOR. If z € L, most r will result in M (z,r) = 1, and few shifts will
be required to cover {0,1}". If x ¢ L, many shifts will be required to cover {0,1}". Specifically,
forz ¢ L, |1;] < 2-(2+1) g0 an exponential number of shifts are required.
We can encode this constraint as

t
rel < ...V, e{0,1}"y e Jl.+ V)
i=1
Using the fact that a + b = ¢ < a = b+ ¢ in Fa, this can be rewritten as

t
rel « ... Vi,V e{0,1}",\/(y+ V) €1,
i=1
which can also be rewritten as

t
rel < V...V, Wy e{0,1}",\/ M(z,y + V)
i=1
This can be translated into a polynomial sized boolean formula using Cook-Levin assuming ¢ is
bounded by some polynomial of n. The only thing left to show is that we can have such a bound.
Consider if V; ...V, are picked independently and at random. We want to bound the probability
that

t
Fy e {0, 13", N+ Vi) & 1
i=1
For a fixed y, the probability that A'_,(y + Vi) & 1, is 27t*D by the BPP threshold and
independence. Hence, we have

t n

n 2
EyE{O,l} ’{\l(y'i‘vi)glmgw

and picking ¢t = n¢ pushes this probability to 0 and gives us a poly(n) bound on t.

	Relations between complexity classes

