CS 6810: Theory of Computing

Fall 2023
Lecture 19: October 26, 2023
Lecturer: Eshan Chattopadhyay
Scribe: Wayne Chen

Definition 0.1 (Bounded-Error Probabilistic Polynomial Time (BPP)). A language $L \in \mathbf{B P P}$ if there is a probabilistic Turing Machine M that takes in random bitstrings r such that

$$
\forall x \in L, \operatorname{Pr}[M(x, r)=L(x)] \geq \frac{2}{3}
$$

where $L(x)$ is 1 if $x \in L$ and is 0 otherwise

1 Relations between complexity classes

Remark 1.1. $\mathbf{P} \subseteq \mathbf{B P P}$

For any language $L \in \mathbf{P}$ and the deterministic machine M that decides L, just augment M such that it takes in an additional random string r, but ignores it during execution. Then $M(x, r)=L(x)$ always.

Remark 1.2. $\mathbf{R P} \subseteq \mathbf{N P}$

Consider any language $L \in \mathbf{R P}$ and the probabilistic $\mathbf{R P}$ machine M that decides L. For any $x \in L$, there must be some r of poly $(|x|)$ size such that $M(x, r)=1$. Because M operates deterministically given r and within poly $(|x|)$ time, we can say r is a certificate for $x \in L$ for the verifier M. We know M is a correct verifier since if $x \notin L$, no such certificate exists.

Theorem 1.3. $\mathbf{B P P} \subseteq \mathbf{P}_{\text {/poly }}$
We begin with a failed proof:
Failed proof attempt. Assuming $L \in \mathbf{B P P}$, there is some poly-time machine M such that $\forall x \in$ $L, \operatorname{Pr}[M(x, r)=L(x)] \geq \frac{2}{3}$. Recall $\mathbf{P}_{/ \text {poly }}$ is the set of languages that can be computed by machines that take polysized advice strings. Thus we can try to define an advice TM \tilde{M} that simulates M on a 'good random string r ' that is given as advice.

This fails since the advice string directly depends on x (it is not clear if the same random string works for all inputs of a given length).

However, the above strategy can be easily fixed by defining BPP with a $1-2^{-(|x|+1)}$ threshold (which is possible via error reduction) instead of a $\frac{2}{3}$ threshold.

Proof. Define

$$
\operatorname{BAD}_{x}:=\{r: M(x, r) \neq L(x)\}
$$

From the threshold, we have for a random string r

$$
\forall x, \operatorname{Pr}\left[r \in \mathrm{BAD}_{x}\right] \leq 2^{-(|x|+1)}
$$

For $x \in\{0,1\}^{n}$, this means that

$$
\operatorname{Pr}\left[\exists x, r \in \mathrm{BAD}_{x}\right] \leq \frac{2^{n}}{2^{n+1}}<1
$$

and there is some string r^{\prime} such that $M\left(x, r^{\prime}\right)=L(x)$ always. We simply pick M to be the $\mathbf{P}_{/ \text {poly }}$ machine and r^{\prime} to be its advice.

Theorem 1.4. $\mathbf{B P P} \subseteq \boldsymbol{\Sigma}_{\mathbf{2}} \cap \boldsymbol{\Pi}_{\mathbf{2}}$

Proof. Let $x \in\{0,1\}^{n}$ and define BPP using the same threshold as before. Define

$$
1_{x}:=\{r: M(x, r)=1\}
$$

and shifts $V_{i} \in\{0,1\}^{n}$ such that the set

$$
1_{x}+V_{i}:=\left\{x \oplus V_{i}: x \in 1_{x}\right\}
$$

where \oplus is an elementwise XOR. If $x \in L$, most r will result in $M(x, r)=1$, and few shifts will be required to cover $\{0,1\}^{n}$. If $x \notin L$, many shifts will be required to cover $\{0,1\}^{n}$. Specifically, for $x \notin L,\left|1_{x}\right| \leq 2^{-(|x|+1)}$, so an exponential number of shifts are required.

We can encode this constraint as

$$
x \in L \Longleftrightarrow \exists V_{1} \ldots V_{t}, \forall y \in\{0,1\}^{n}, y \in \bigcup_{i=1}^{t}\left(1_{x}+V_{i}\right)
$$

Using the fact that $a+b=c \Leftrightarrow a=b+c$ in \mathbb{F}_{2}, this can be rewritten as

$$
x \in L \Longleftrightarrow \exists V_{1} \ldots V_{t}, \forall y \in\{0,1\}^{n}, \bigvee_{i=1}^{t}\left(y+V_{i}\right) \in 1_{x}
$$

which can also be rewritten as

$$
x \in L \Longleftrightarrow \exists V_{1} \ldots V_{t}, \forall y \in\{0,1\}^{n}, \bigvee_{i=1}^{t} M\left(x, y+V_{i}\right)
$$

This can be translated into a polynomial sized boolean formula using Cook-Levin assuming t is bounded by some polynomial of n. The only thing left to show is that we can have such a bound. Consider if $V_{1} \ldots V_{t}$ are picked independently and at random. We want to bound the probability that

$$
\exists y \in\{0,1\}^{n}, \bigwedge_{i=1}^{t}\left(y+V_{i}\right) \notin 1_{x}
$$

For a fixed y, the probability that $\bigwedge_{i=1}^{t}\left(y+V_{i}\right) \notin 1_{x}$ is $2^{-t(n+1)}$, by the BPP threshold and independence. Hence, we have

$$
\exists y \in\{0,1\}^{n}, \bigwedge_{i=1}^{t}\left(y+V_{i}\right) \notin 1_{x} \leq \frac{2^{n}}{2^{t(n+1)}}
$$

and picking $t=n^{c}$ pushes this probability to 0 and gives us a poly (n) bound on t.

