Definition 0.1 (Bounded-Error Probabilistic Polynomial Time (BPP)). A language \(L \in \text{BPP} \) if there is a probabilistic Turing Machine \(M \) that takes in random bitstrings \(r \) such that

\[
\forall x \in L, \Pr[M(x, r) = L(x)] \geq \frac{2}{3}
\]

where \(L(x) \) is 1 if \(x \in L \) and is 0 otherwise.

1 Relations between complexity classes

Remark 1.1. \(\text{P} \subseteq \text{BPP} \)

For any language \(L \in \text{P} \) and the deterministic machine \(M \) that decides \(L \), just augment \(M \) such that it takes in an additional random string \(r \), but ignores it during execution. Then \(M(x, r) = L(x) \) always.

Remark 1.2. \(\text{RP} \subseteq \text{NP} \)

Consider any language \(L \in \text{RP} \) and the probabilistic \(\text{RP} \) machine \(M \) that decides \(L \). For any \(x \in L \), there must be some \(r \) of \(\text{poly}(|x|) \) size such that \(M(x, r) = 1 \). Because \(M \) operates deterministically given \(r \) and within \(\text{poly}(|x|) \) time, we can say \(r \) is a certificate for \(x \in L \) for the verifier \(M \). We know \(M \) is a correct verifier since if \(x \notin L \), no such certificate exists.

Theorem 1.3. \(\text{BPP} \subseteq \text{P}/\text{poly} \)

We begin with a failed proof:

Failed proof attempt. Assuming \(L \in \text{BPP} \), there is some poly-time machine \(M \) such that \(\forall x \in L, \Pr[M(x, r) = L(x)] \geq \frac{2}{3} \). Recall \(\text{P}/\text{poly} \) is the set of languages that can be computed by machines that take poly-sized advice strings. Thus we can try to define an advice TM \(\hat{M} \) that simulates \(M \) on a ‘good random string \(r \)’ that is given as advice.

This fails since the advice string directly depends on \(x \) (it is not clear if the same random string works for all inputs of a given length).

However, the above strategy can be easily fixed by defining \(\text{BPP} \) with a \(1 - 2^{-|x|+1} \) threshold (which is possible via error reduction) instead of a \(\frac{2}{3} \) threshold.

Proof. Define

\[\text{BAD}_x := \{ r : M(x, r) \neq L(x) \}\]

From the threshold, we have for a random string \(r \)

\[\forall x, \Pr[r \in \text{BAD}_x] \leq 2^{-|x|+1}\]
For \(x \in \{0, 1\}^n \), this means that

\[
\Pr[\exists x, r \in \text{BAD}_x] \leq \frac{2^n}{2^{n+1}} < 1
\]

and there is some string \(r' \) such that \(M(x, r') = L(x) \) always. We simply pick \(M \) to be the \(\mathbb{P}/\text{poly} \) machine and \(r' \) to be its advice.

\[\square \]

Theorem 1.4. \(\text{BPP} \subseteq \Sigma_2 \cap \Pi_2 \)

Proof. Let \(x \in \{0, 1\}^n \) and define \(\text{BPP} \) using the same threshold as before. Define

\[1_x := \{ r : M(x, r) = 1 \} \]

and shifts \(V_i \in \{0, 1\}^n \) such that the set

\[1_x + V_i := \{ x \oplus V_i : x \in 1_x \} \]

where \(\oplus \) is an elementwise XOR. If \(x \in L \), most \(r \) will result in \(M(x, r) = 1 \), and few shifts will be required to cover \(\{0, 1\}^n \). If \(x \not\in L \), many shifts will be required to cover \(\{0, 1\}^n \). Specifically, for \(x \not\in L \),

\[|1_x| \leq 2^n - (n+1) \]

so an exponential number of shifts are required.

We can encode this constraint as

\[x \in L \iff \exists V_1 \ldots V_t, \forall y \in \{0, 1\}^n, y \in \bigcup_{i=1}^{t} (1_x + V_i) \]

Using the fact that \(a + b = c \iff a = b + c \) in \(\mathbb{F}_2 \), this can be rewritten as

\[x \in L \iff \exists V_1 \ldots V_t, \forall y \in \{0, 1\}^n, \bigvee_{i=1}^{t} (y + V_i) \in 1_x \]

which can also be rewritten as

\[x \in L \iff \exists V_1 \ldots V_t, \forall y \in \{0, 1\}^n, \bigvee_{i=1}^{t} M(x, y + V_i) \]

This can be translated into a polynomial sized boolean formula using Cook-Levin assuming \(t \) is bounded by some polynomial of \(n \). The only thing left to show is that we can have such a bound. Consider if \(V_1 \ldots V_t \) are picked independently and at random. We want to bound the probability that

\[\exists y \in \{0, 1\}^n, \bigwedge_{i=1}^{t} (y + V_i) \not\in 1_x \]

For a fixed \(y \), the probability that \(\bigwedge_{i=1}^{t} (y + V_i) \not\in 1_x \) is \(2^{-t(n+1)} \), by the \(\text{BPP} \) threshold and independence. Hence, we have

\[\exists y \in \{0, 1\}^n, \bigwedge_{i=1}^{t} (y + V_i) \not\in 1_x \leq \frac{2^n}{2^{t(n+1)}} \]

and picking \(t = n^c \) pushes this probability to 0 and gives us a \(\text{poly}(n) \) bound on \(t \).

\[\square \]