
CS 6810: Theory of Computing Fall 2023

Lecture 18: Oct 24, 2023

Lecturer: Eshan Chattopadhyay Scribe: Haripriya Pulyassary

1 Introduction

Randomness is useful in designing algorithms. An excellent example of this is the problem of test-
ing if a polynomial polynomial p ∈ Fq[x1, . . . , xn] is the zero polynomial. While it is difficult to
design a deterministic algorithm for this problem (as we would have to check the coefficient of each
monomial), the Schwartz-Zippel Lemma asserts that a randomly selected x will not be a root of p
with high probability. This observation yields the following simple randomized algorithm for the
problem: randomly choose x and evaluate p(x); if p(x) = 0, return “Yes”, otherwise return “No”.

In this module, we will study the setting where Turing machines have access to randomized
bits.

2 Probabilistic Turing Machines

There are two equivalent definitions for probabilistic Turing machines.

I. Let M be a multitape Turing machine with two transition functions δ0, δ1. We also assume
that M has access to random coins. At each step M chooses between one of δ0, δ1 using the
random bits. When M requires a random bit, it goes to a special state; at this point the
random coin is flipped and its value is reported to M .

We assume that the coin is always fair. It is important to note here that we cannot access
the history of coin flip realizations at a later step. That is, if the machine requires access to
the realized value of the 10th coin flip at a later step, then this value must be stored on the
tape. Hence, while we could think of a tape with random bits written on it (instead of a coin
being flipped each time), we must ensure that M cannot see past history on this tape. One
workaround that ensures this is that we only allow the pointer to move to the right on the
random bits tape.

II. M is a Turing Machine which takes in two inputs: (x, r) where x is the input it is working
on, and r is the randomness supplied to it. We assume that r ∼Uniform {0, 1}poly(|x|).

Both definitions are equivalent as in, given one, it is possible to simulate the other. However,
we will often find it easier to work with the second definition.

1

Lecture 18: Oct 24, 2023 2

3 Complexity classes

In this section, we define some (time) complexity classes for this setting.

Definition 3.1 (Probabilistic Polynomial Time (PP)). L ∈ PP if there exists M that runs in
polynomial time (for all random choices), and

• If x ∈ L, then Pr[M(x, r) = 1] > 1
2

• If x /∈ L, then Pr[M(x, r) = 1] ≤ 1
2 .

Notice that this definition just requires M to perform better than the naive algorithm of ac-
cepting with a probability of 1

2 .

Definition 3.2 (Bounded Probabilistic Polynomial Time (BPP)). L ∈ BPP if there exists M that
runs in polytime for any random choice, and

• If x ∈ L, then Pr[M(x, r) = 1] > 2
3 .

• If x /∈ L, then Pr[M(x, r) = 1] < 1
3 .

Definition 3.3 (Randomized Polynomial (RP)). L ∈ RP if there exists a probabilistic Turing
Machine M that runs in polynomial time for any random choice, and

• If x ∈ L, then Pr[M(x, r) = 1] ≥ 1
2 .

• If x /∈ L, then Pr[M(x, r) = 1] = 0.

Definition 3.4 (co-RP). L ∈ RP if there exists a probabilistic Turing Machine M that runs in
polynomial time for any random choice, and if x ∈ L, then Pr[M(x, r) = 1] = 1. If x /∈ L,
Pr[M(x, r) = 1] ≤ 1

2 .

A helpful mnemonic is RP does not allow false positives, and co-RP does not allow false negatives.

There are two classes of randomized algorithms: Monte-Carlo (these algorithms can be wrong
with some probability bound) and Las Vegas (such algorithms cannot output a wrong answer, but
allowed to take very long time on some inputs, as long as the expected time (over r) is polynomial).
In a sense, one can view the following complexity class, ZPP , as pertaining to languages with “Las
Vegas”-esque probabilistic Turing machines.

Definition 3.5 (Zero-error Probabilistic Polynomial (ZPP)). L ∈ ZPP if M is a probabilistic TM
such that for all x, M(x) = L(x) with probability 1 and maxx∈{0,1}n Er[T (x)] = poly(n).

Lecture 18: Oct 24, 2023 3

Proposition 3.6. ZPP = RP ∩ co−RP .

Proof. We first show that RP ∩ co−RP ⊆ ZPP . Let L ∈ RP ∩ co − RP . Then, there exists
Turing machines MRP and McoRP such that both decide L and satisfy the requirements of RP and
co−RP respectively. Consider the following algorithm:

while True do

Run MRP (x, r1) and Mco−RP (x, r2) where r1, r2 ∼ {0, 1}poly(|x|).
if MRP (x, r1) = 1 then

break and return x ∈ L
end
if Mco−RP (x, r2) = 0 then

break and return x /∈ L
else

Repeat
end

end

Note that this algorithm will always output L(x) (as MRP (x, r) = 1 only if x ∈ L and
Mco−RP (x, r) = 0 only if x /∈ L). It remains to analyze the expected runtime. The expected
number of times we repeat the while loop is at most 1

1− 1
2

= 2; this is the expected value of

a geometric random variable with p = 1 − 1
2 , which is a lower bound on the probability that

x ∈ L and MR(x, r1) = 1 or x /∈ L and Mco−RP (x, r2) = 0. So the expected runtime is at most
2 · (TRP + Tco−RP). Thus, L ∈ ZPP .

We now prove the other direction. Suppose L ∈ ZPP . We first show that L ∈ RP . Suppose
M is a Turing machine such that M(x) = L(x) with probability 1 for all x, and the expected
running time of M is T (n) = poly(n). We construct M ′ as follows: on an input x, we simulate M
for 2T (x) steps. If an answer is obtained, we return M(x). Otherwise, if no answer is obtained
in 2T (x) steps, we output 0. If x /∈ L, M ′(x) = 0. If x ∈ L, the probability that M ′(x) = 0 is
precisely the probability that M does not terminate within 2T (x) steps; this is at most 1/2 by
Markov’s inequality. So M ′ is a probabilistic Turing machine satisfying the conditions of RP and
hence L ∈ RP .

We can use an analogous argument to show that L ∈ co−RP . We construct M ′′ as follows: on
an input x, we simulate M for 2T (x) steps. If an answer is obtained, we return M(x). Otherwise,
if no answer is obtained in 2T (x) steps, we output 1. If x ∈ L, M ′′(x) = 1. If x /∈ L, the probability
that M ′′(x) = 1 is precisely the probability that M does not terminate within 2T (x) steps; this is at
most 1/2 by Markov’s inequality. So M ′′ is a probabilistic Turing machine satisfying the conditions
of RP and hence L ∈ co−RP .

Lecture 18: Oct 24, 2023 4

4 Error Reduction

Definition 4.1 (RP ε). L ∈ RP ε if there exists a probabilistic Turing Machine M that runs in
polynomial time for any random choice, if x ∈ L, Pr[M(x, r) = 1] ≥ 1− ε. If x /∈ L, Pr[M(x, r) =
1] = 0.

It is easy to see that RP ε ⊆ RP , when ε ≤ 1
2 .

Proposition 4.2. RP ⊆ RP ε for any 1/2 ≥ ε ≥ 2−poly(|x|).

Proof. Suppose L ∈ RP , and let M be the probabilistic Turing machine asserted by the definition
of RP . We define the probabilistic Turing machine M̃ as follows. To run M̃ on input x, sample
r1, . . . , rt, run M(x, r1), . . . ,M(x, rt), and return ∨(M(x, r1), . . . ,M(x, rt)) (we define t later). If
x /∈ L, M̃ outputs 0 with probability 1. If x ∈ L, the probability that M̃ outputs 0 is the probability
that M(x, ri) = 0 for all i = 1, . . . , t; this probability is at most 1

2t . If we define t := log(1/ε), the

probability that M̃(x) = 0 and x ∈ L is at most ε. Furthermore, as long as ε = 2−poly(|x|), M̃ runs
in polynomial time.

Definition 4.3 (BPP ε). L ∈ BPP ε if there exists M that runs in polytime for any random choice,
and if x ∈ L, then Pr[M(x, r) = L(x)] ≥ 1− ε.

Proposition 4.4. BPP = BPP ε, for any 1/3 > ε ≥ 2−poly(|x|).

Proof. Suppose L ∈ BPP , and let M be the probabilistic Turing machine asserted by the definition
of BPP . We define M̃ as follows. To run M̃ on x, sample r1, . . . , rt, run M(x, r1), . . . ,M(x, rt),
and return Majority(M(x, r1), . . . ,M(x, rt)).

Define Xi = M(x, ri), X =
∑t

i=1Xi. If x ∈ L, E[X] ≥ 2
3 t. Using Hoeffding’s Inequality, it

follows that

Pr[
t∑

i=1

Xi <
t

2
] ≤ Pr[|X − E[X]| > t

6
] ≤ 2−Ω(t) ≤ ε,

where t = O(log(1/ε)) An analogous argument shows that if x /∈ L, Pr[
∑t

i=1Xi >
t
2] ≤ ε.

	Introduction
	Probabilistic Turing Machines
	Complexity classes
	Error Reduction

