CS 6810: Theory of Computing Fall 2023

Lecture 18: Oct 24, 2023
Lecturer: Eshan Chattopadhyay Scribe: Haripriya Pulyassary

1 Introduction

Randomness is useful in designing algorithms. An excellent example of this is the problem of test-
ing if a polynomial polynomial p € Fy[x1,...,x,] is the zero polynomial. While it is difficult to
design a deterministic algorithm for this problem (as we would have to check the coefficient of each
monomial), the Schwartz-Zippel Lemma asserts that a randomly selected x will not be a root of p
with high probability. This observation yields the following simple randomized algorithm for the
problem: randomly choose = and evaluate p(x); if p(x) = 0, return “Yes”, otherwise return “No”.

In this module, we will study the setting where Turing machines have access to randomized
bits.

2 Probabilistic Turing Machines

There are two equivalent definitions for probabilistic Turing machines.

I. Let M be a multitape Turing machine with two transition functions &g, ;. We also assume
that M has access to random coins. At each step M chooses between one of §g, d; using the
random bits. When M requires a random bit, it goes to a special state; at this point the
random coin is flipped and its value is reported to M.

We assume that the coin is always fair. It is important to note here that we cannot access
the history of coin flip realizations at a later step. That is, if the machine requires access to
the realized value of the 10th coin flip at a later step, then this value must be stored on the
tape. Hence, while we could think of a tape with random bits written on it (instead of a coin
being flipped each time), we must ensure that M cannot see past history on this tape. One
workaround that ensures this is that we only allow the pointer to move to the right on the
random bits tape.

II. M is a Turing Machine which takes in two inputs: (x,r) where z is the input it is working
on, and r is the randomness supplied to it. We assume that r ~giform {0, 1}p°ly(|x|).

Both definitions are equivalent as in, given one, it is possible to simulate the other. However,
we will often find it easier to work with the second definition.

Lecture 18: Oct 24, 2023 2

3 Complexity classes

In this section, we define some (time) complexity classes for this setting.

Definition 3.1 (Probabilistic Polynomial Time (PP)). L € PP if there exists M that runs in
polynomial time (for all random choices), and

o [fx e L, then Pr[M(xz,r)=1] >

(NSl T

o Ifx ¢ L, then Pr[M(x,r)=1] <

Notice that this definition just requires M to perform better than the naive algorithm of ac-
cepting with a probability of %

Definition 3.2 (Bounded Probabilistic Polynomial Time (BPP)). L € BPP if there exists M that
runs in polytime for any random choice, and

o Ifx € L, then Pr[M(x,r)=1] >

Wl wIN

o [fx ¢ L, then Pr[M(x,r) =1] <

Definition 3.3 (Randomized Polynomial (RP)). L € RP if there exists a probabilistic Turing
Machine M that runs in polynomial time for any random choice, and

o Ifz €L, then Pr[M(z,r) =1] > 3.
o Ifx ¢ L, then Pr[M(x,r) =1] =0.

Definition 3.4 (co-RP). L € RP if there exists a probabilistic Turing Machine M that runs in
polynomial time for any random choice, and if v € L, then Pr[M(z,r) = 1] = 1. Ifxz ¢ L,
Pr[M(z,r) =1] < 3.

A helpful mnemonic is RP does not allow false positives, and co-RP does not allow false negatives.

There are two classes of randomized algorithms: Monte-Carlo (these algorithms can be wrong
with some probability bound) and Las Vegas (such algorithms cannot output a wrong answer, but
allowed to take very long time on some inputs, as long as the expected time (over r) is polynomial).
In a sense, one can view the following complexity class, Z PP, as pertaining to languages with “Las
Vegas”-esque probabilistic Turing machines.

Definition 3.5 (Zero-error Probabilistic Polynomial (ZPP)). L € ZPP if M is a probabilistic TM
such that for all x, M (x) = L(x) with probability 1 and max,c 1y Er[T'(x)] = poly(n).

Lecture 18: Oct 24, 2023 3

Proposition 3.6. ZPP = RP Nco—RP.

Proof. We first show that RP Nco—RP C ZPP. Let L € RPN co— RP. Then, there exists
Turing machines Mgrp and M.,rp such that both decide L and satisfy the requirements of RP and
co — RP respectively. Consider the following algorithm:

while True do
Run Mgp(x,r1) and M.,—gp(x,72) Where ri,7m9 ~ {0, 1}p0ly(|“"‘).
if MRP<$,7’1) =1 then
| break and return z € L
end
if MCO,RP(:B,’I‘Q) =0 then
| break and return x ¢ L
else
| Repeat
end

end

Note that this algorithm will always output L(z) (as Mgp(z,7) = 1 only if z € L and
Meo—pp(z,r) = 0 only if x ¢ L). It remains to analyze the expected runtime. The expected
number of times we repeat the while loop is at most 1% = 2; this is the expected value of

2
a geometric random variable with p = 1 — %, which is a lower bound on the probability that
x € L and Mg(x,r1) =1or x ¢ L and Ms_gp(x,r2) = 0. So the expected runtime is at most

2. (TRP + Tco—RP)- Thus, L € ZPP.

We now prove the other direction. Suppose L € ZPP. We first show that L € RP. Suppose
M is a Turing machine such that M(z) = L(z) with probability 1 for all z, and the expected
running time of M is T'(n) = poly(n). We construct M’ as follows: on an input x, we simulate M
for 2T'(z) steps. If an answer is obtained, we return M (x). Otherwise, if no answer is obtained
in 27 (x) steps, we output 0. If z ¢ L, M'(z) = 0. If z € L, the probability that M’'(x) = 0 is
precisely the probability that M does not terminate within 27'(x) steps; this is at most 1/2 by
Markov’s inequality. So M’ is a probabilistic Turing machine satisfying the conditions of RP and
hence L € RP.

We can use an analogous argument to show that L € co— RP. We construct M" as follows: on
an input z, we simulate M for 27 (x) steps. If an answer is obtained, we return M (x). Otherwise,
if no answer is obtained in 27'(z) steps, we output 1. If z € L, M"(x) = 1. If x ¢ L, the probability
that M"(x) = 1 is precisely the probability that M does not terminate within 27°(z) steps; this is at
most 1/2 by Markov’s inequality. So M" is a probabilistic Turing machine satisfying the conditions
of RP and hence L € co — RP. O

Lecture 18: Oct 24, 2023 4

4 Error Reduction

Definition 4.1 (RP®). L € RP® if there exists a probabilistic Turing Machine M that runs in
polynomial time for any random choice, if x € L, Pr[M(z,r) =1]>1—¢. Ifx ¢ L, Pr[M(z,r) =
1] =0.

It is easy to see that RP® C RP, when ¢ %
Proposition 4.2. RP C RP® for any 1/2 > ¢ > 2—poly(|z])

Proof. Suppose L € RP, and let M be the probabilistic Turing machine asserted by the definition
of RP. We define the probabilistic Turing machine M as follows. To run M on input z, sample
Tly...,re, run M(x,ry),..., M(z,r), and return V(M (z,71),...,M(x,r;)) (we define ¢ later). If
x ¢ L, M outputs 0 with probability 1. If x € L, the probability that M outputs 0 is the probability
that M (z,r;) =0 for all ¢ = 1,...,¢; this probability is at most % If we define ¢ := log(1/¢), the
probability that M(z) = 0 and z € L is at most . Furthermore, as long as ¢ = 272D A runs
in polynomial time. O

Definition 4.3 (BPP®). L € BPP® if there exists M that runs in polytime for any random choice,
and if x € L, then Pr[M(x,r) = L(z)] > 1 —e.

Proposition 4.4. BPP = BPP, for any 1/3 > ¢ > 27 po(al),

Proof. Suppose L € BPP, and let M be the probabilistic Turing machine asserted by the definition
of BPP. We define M as follows. To run M on x, sample r1,...,7r¢, run M(x,r1),..., M(z, 1),
and return Majority(M (z,r1),..., M(x,r)).

Define X; = M(z,r;), X = >.._, X;. If x € L, E[X] > 2¢. Using Hoeffding’s Inequality, it
follows that

t
Pr[y "X, < g] < Pr[|X — E[X]| > é] <27 < ¢

where ¢ = O(log(1/¢)) An analogous argument shows that if z ¢ L, Pr[>_; X; > §] <e. O

	Introduction
	Probabilistic Turing Machines
	Complexity classes
	Error Reduction

