
CS 6810: Theory of Computing Fall 2023

Lecture 17: The Polynomial Hierarchy Continued

Lecturer: Eshan Chattopadhyay Scribe: Ruqing Xu

1 Alternating Turing Machines

Definition 1.1. Alternating Turing Machines (ATMs) can be seen as generalized NDTMs with the
following features:

• Like an NDTM, an ATM has two transition functions δ0 and δ1.

• Unlike an NDTM, every state q ∈ Q in an ATM (except qaccept and qhalt) has an associated
label (either ∃ or ∀).

An ATM M accepts a string x if the following conditions hold. Let GM,x be the configuration graph
of M on input x. We iteratively define a subset of the nodes in GM,x called ACCEPT:

• If a node is in state qaccept, add it to the set ACCEPT.

• If a node is in a state labeled ∃, add it to ACCEPT if at least one of its neighbors is in
ACCEPT.

• If a node is in a state labeled ∀, add it to ACCEPT if both of its neighbors are in ACCEPT.

M accepts an input x if and only if the starting configuration Cstart is in ACCEPT when the procedure
stops.

Remark 1.2. A NDTM can be seen as a special case of ATMs where all states are labeled ∃.
Therefore, a NDTM accepts a string if there is any path in the configuration graph from Cstart to
nodes with state qaccept.

2 ATM Definitions of the Polynomial Hierarchy

Definition 2.1. For any function T : N → N and any language L ⊂ {0, 1}∗, we say L ∈
ATIME(T (n)) if there exists an ATM M that computes L in O(T (n)) time.

Definition 2.2. The complexity class AP of alternating polynomial time is defined as

AP =
⋃
C∈N

ATIME(nC)

Observation 2.3. AP = PSPACE.

The complexity class ATIME imposes no restrictions on the ATMs used to compute the language.
Next, we consider various restrictions on the ATMs and show that this establishes the relationship
between ATMs and the polynomial hierarchy.

1



Lecture 17: The Polynomial Hierarchy Continued 2

Definition 2.4. For any function T : N → N and any language L ⊂ {0, 1}∗, we say L ∈
ΣiTIME(T (n)) if there exists an ATM M that computes L in O(T (n)) time with the following
restrictions: qstart is labeled ∃, and for any input x and any sequence of choices of transition func-
tions, the machine switches from states with one label and states with the other label at most i− 1
times.

Similarly, we can define class ΠiTIME(T (n)) with the restriction that qstart is labeled ∀.

Observation 2.5. Σi =
⋃

C∈NΣiTIME(nC) and Πi =
⋃

C∈NΠiTIME(nC).

This observation shows that we can think of the levels of polynomial hierarchy as languages
computable by the corresponding restricted ATMs. The intuition for the equivalence condition is
that the choices of transition functions after each “swtich” of quantifiers of a ATM can be seen as
non-deterministic guesses for the certificate following the corresponding quantifier in the decision
problem. Then, the acceptance condition of the ATM ensures that a string is in the language if
and only if the ATM accepts the string.

3 Oracle Definitions of the Polynomial Hierarchy

Recall that Oracle Turing Machines are Turing Machines that are given oracle access to some
language and can query whether a string is in the language during its computations. Also recall
that the complexity class NPO is the set of languages that a NDTM with oracle access to O can
compute in polynomial time.

Definition 3.1. For a boolean formula ϕ and i vectors of boolean variables,

ϕ ∈ ΣiSAT ⇐⇒ ∃x1∀x2∃ . . . Qixi ϕ(x1, . . . , xi) = 1.

where Qi is ∀ or ∃ depending on whether i is even or odd. ΣiSAT is a complete problem for Σi.

Claim 3.2. For all i ≥ 1, Σi+1 = NPΣi.

Proof. We exemplify this by proving Σ2 = NPΣ1 . Without loss of generality, we consider the oracle
access to the complete language in Σ1, i.e. NP

Σ1SAT.
We first prove the direction that Σ2 ⊂ NPΣ1SAT. This is equivalent to proving Σ2SAT ⊂

NPΣ1SAT. Recall that a formula ϕ ∈ Σ2SAT if and only if ∃x∀y, ϕ(x, y) = 1. We want to show
that the language Σ2SAT can be determined by a polynomial-time NDTM M with oracle access
to Σ1SAT, which is just SAT. This machine M works like follows: for any input ϕ, first non-
deterministically guess a certificate x. For this fixed x, consider the negation of the original problem:
∃y,¬ϕ(x, y) = 1. This problem is in SAT and thus can be answered by the oracle. If the oracle
answers “Yes”, let the machineM reject on this path. If the oracle answers “No”, let the machineM
accept on this path. If the machine accepts on any of the non-deterministic paths, then ϕ ∈ Σ2SAT.
Therefore, machine M decides Σ2SAT in polynomial time.

Next, we prove the direction that NPΣ1SAT ⊂ Σ2. Consider a language L ∈ NPΣ1SAT. This
means that there exists a polynomial-time verifier V such that x ∈ L ⇐⇒ ∃y V SAT(x, y) = 1.
The process of running V involves making some oracle queries ϕ1, . . . , ϕm, each accompanied with
an answer a1, . . . , am. For each i = 1, . . . ,m, if ai = 1, we know that ∃ui such that ϕi(ui) = 1. If



Lecture 17: The Polynomial Hierarchy Continued 3

ai = 0, we know that ∀vi it must be that ϕi(vi) = 0. Therefore, we can equivalently write that

x ∈ L ⇐⇒ ∃y, ϕ1, . . . , ϕm, a1, . . . , am, u1, . . . , um,

∀v1, . . . , vm,

V accepts (x, y) using the guessed queries and answers {ϕi, ai} AND

∀i = 1, . . . ,m, ai = 1 =⇒ ϕi(ui) = 1, ai = 0 =⇒ ∀vk, ϕi(vk) = 0.

The right-hand-side of the equivalence defines an ATM with quantifiers ∃,∀, which nondetermin-
istically guesses a certificate y, a series of queries ϕ1, . . . , ϕm, correct answers a1, . . . , am, and
assignments u1, . . . , um, and accepts x if on one of the non-deterministic paths, the guesses of
all the above strings are sufficient for the machine and are consistent with each other. There
can only be polynomially many queries, and all the guesses and checks for consistencies on ϕ(ui)
take polynomial time. Therefore, L can be determined in polynomial time by such machines, i.e.,
L ∈ Σ2.

4 Karp-Lipton Theorem

Theorem 4.1. If NP ⊂ P/poly, then PH = Σ2, i.e., the polynomial hierarchy collapses at level 2.

Proof. If we can show that Π2SAT ∈ Σ2, we will have Π2 ⊂ Σ2. Then, for any L ∈ Σ2, we know
L ∈ Π2 ⊂ Σ2. Therefore we also have L ∈ Σ2 and L ∈ Π2. This shows that Σ2 ⊂ Π2 and thus
Σ2 = Π2. By a claim we proved in last lecture, PH = Σ2.

Now we prove that Π2SAT ∈ Σ2. For a string x, define a language Lx as ϕ ∈ Lx ⇐⇒
∃yϕ(x, y) = 1. Clearly Lx ∈ NP. If NP ⊂ P/poly, then there exists a polynomial-sized circuit
family {Cl(x, ·)}l∈N such that Cl(x, ϕ) = 1 ⇐⇒ ϕ ∈ Lx. Yet, using the search to decision
reduction (see Theorem 2.19 in Arora & Barak), we know that there exists another polynomial-
sized circuit family {C̃l(x, ·)}l∈N such that if ϕ ∈ Lx ⇐⇒ ϕ(x, C̃l(x, ϕ)) = 1. In other words, if
there is an assignment y such that ϕ(x, y) = 1, C̃l(x, ϕ) outputs the assignment.

We build the new circuit family as follows. If the decision version of the problem is true, i.e.,
Cl(x, ϕ) = 1, then there must be a string y such that ϕ(x, y) = 1. We can guess each digit of y and
use the circuit family {Cl(x, ·)}l∈N to check the guess. For example, if Cl(x ◦ 0, ϕ) = 1 (where x ◦ 0
means x concatenated with 0), then we know that for some possible assignments the first digit of
y is 0. If instead Cl(x ◦ 0, ϕ) = 0, then we know that the first digit of y is 1. In either case, we can
proceed to the next digit. Importantly, for each digit we used only one circuit from {Cl(x, ·)}l∈N
to check one time. Therefore, the new circuit family that outputs the string y will make use of
{Cl(x, ·)}l∈N and will be polynomial-sized.

Taking together, we have ∃yϕ(x, y) = 1 ⇐⇒ C̃l(x, ϕ) = y ⇐⇒ ϕ(x, C̃l(x, ϕ)) = 1. In other
words, ϕ ∈ Π2SAT ⇐⇒ ∀x∃y, ϕ(x, y) = 1 ⇐⇒ ∃{C̃l(x, ·)}l∈N∀x, ϕ(x, C̃l(x, ϕ)) = 1. This circuit
family is polynomial-sized in ϕ and can be guessed non-deterministically like a certificate. This
corresponds to a decision problem in Σ2, and therefore, we proved that Π2SAT ∈ Σ2.


	Alternating Turing Machines
	ATM Definitions of the Polynomial Hierarchy
	Oracle Definitions of the Polynomial Hierarchy
	Karp-Lipton Theorem

