
CS 6810: Theory of Computing Fall 2021

Lecture 16: The Polynomial Hierarchy

Lecturer: Eshan Chattopadhyay Scribe: Owen Oertell

Announcements: Project report is due end of day on Friday.
We first consider the problem min-dnf. Which is just the set of DNFs such that there exists

no smaller DNF which is equivalent.
We know that SAT clearly sit in NP, but is hard for P. Thus naturally the question as to where

min-dnf sits arises. We can rephrase this problem as to: If ϕ has some size (based on an agreed
upon encoding) and there exits some ψ which has a smaller size, and both are in min-dnf, then
for some z we have that ϕ(z) ̸= ψ(z). Written formally, if

ϕ ∈ min-dnf iff ∀ψ, |ψ| < |ϕ| =⇒ ∃z, ϕ(z) ̸= ψ(z)

.
Question: Is min-dnf in NP? P? PSPACE?
Clearly, we see that it is in PSPACE since we can enumerate all the possible DNFs to find those

in the language, while reusing the space of the input. However, it is unclear whether or not it is in
NP or co-NP since we need the power of ∀ and ∃ in order to express the language. Therefore we
almost want some mix between the two.

Definition 0.1 (∃c). Let c be any complexity class. Define ∃c such that L ∈ ∃c if for some L′ ∈ C
iff ∃y ∈ {0, 1}poly(|x|), (x, y) ∈ L′.

Similarly, we define ∀c,

Definition 0.2 (∀c). Let c be any complexity class. Define ∀c such that L ∈ ∀c if for some L′ ∈ C
iff ∀y ∈ {0, 1}poly(|x|), (x, y) ∈ L′.

There are a few immediate observations. Particularly, ∃P = NP . Further, ∀P = coNP . Both
of these observations follow from the definition of NP and co-NP respectively. Also we note that
adding repeated exists does not increase the power of the complexity class just as adding more
forall’s does not increase the power of the complexity class (∃∃P = ∃P). Finally, we note that
c ⊆ ∃c,∀c.

Polynomial Hierarchy

We now define the Polynomial Hierarchy which is constructed by repeatedly applying these quan-
tifiers.

We define the base of the Hierarchy as

Σ0 = Π0 = P

Then we define inductively
Σi = ∃Πi−1 and Πi = ∀Σi−1

.
Finally, we define the complexity class

PH =
⋃
i∈N

Σi =
⋃
i∈N

Πi

.

1

Lecture 16: The Polynomial Hierarchy 2

Observation 0.3. Πi ⊆ Σi+1 ⊆ Πi+2

This observation follows previously by the fact that c ⊆ ∀c,∃c.
We can construct a pictorial hasse diagram of the polynomial hierarchy as follows:

Σ3 Π3

Σ2 Π2

Σ1 = NP Π1 = co-NP

P = Σ0 = Π0

Claim 0.4. ∀i,Πi = ∀Σi−1

Pf. This follows by induction. Since we know that πi = ∀Σi−1, let L ∈ Πi by definition, we
have that x ∈ L iff ∀y, (x, y) /∈ L′. This is equivalent to x ∈ L̄ iff ∀y, (x, y) ∈ L̄. But we know that
L̄′ ∈ Πi−1 Therefore, L̄′ ∈ ∃Πi−1 = Σi

We return to the question, where does min-dnf sit in the Polynomial hierarchy. However,
naturally because of the quantifiers used in the formulation of the problem, it would be in Π2 of
the Polynomial Hierarchy.

Claim 0.5. If Σi = Πi ,then PH = Σi (i.e. the polynomial hierarchy collapses)

Pf. By definition we have that
Σi=1 = ∀Πi

but by assumption, we have that this is equal to

= ∃Πi = ∃Σi = Σi

Similarly,

Πi+1 = ∀Σi = ∀Πi = Πi

(again, since we know repeated for all and repeated exists add no power to the complexity class)
Therefore we have that Πi+1 = Πi+1 = Σi.
It is clear that as a corollary,

Corollary 0.6. NP = coNP , then PH = NP = coNP

We also note that if P = NP then the polynomial time hierarchy collapses to level 0.
That is, Since we know that P = NP =⇒ NP = coNP which implies that PH collapses to

level 1. However since P = NP it therefore collapses to level 0.

Lecture 16: The Polynomial Hierarchy 3

PH vs PSPACE

Complete Problems

We consider what the natural complete problem would be for the polynomial hierarchy.
For Σi, we have that the natural complete problem is

Σi-SAT = {ϕ | ∃y1∀y2∃y3 . . . ϕ(x, y1, y2, y3, . . .)}

Similarly, for Πi, we have that the natural complete problem is

Πi-SAT = {ϕ | ∀y1∃y2∀y3 . . . ϕ(x, y1, y2, y3, . . . }

Question: We consider the question therefore, does PH have a complete problem like some
other classes?

We believe the answer is no. If there were to exist a complete problem, then it collapses.
Suppose that L is a complete language for PSPACE. Then since PH =

⋃
Σi, L ∈ Σi for some i.

Thus by definition we have that for any L′ ∈ PH, L′ ≤p L. This x ∈ L′ ⇐⇒ f(x) ∈ L for some f
computable in P .

We further believe that PH ⊊ PSPACE. Specifically, this is known because of the fact that
each of these complete problems are in PSPACE (we just try each of the possibilities and remember
when we stop). However since PSPACE has a complete language (TQBF), for example, we believe
that this is a strict subset.

Alternating Turning Machines

We again consider the idea that there are two transition functions. δ0, δ1.
Every state of M has a label ∃, ∀.
For input x, let GM,x be the configuration graph of M on x. We will iteratively build up a set

ACCEPT and accept if the START node is in that set.
Note that the labels from the states in the TM turn into labels on the states in the configuration

graph.
We follow this procedure to build up ACCEPT until we hit a steady state (no more accept

nodes can be added) or the start state is added to the set.

1. Initially, ACCEPT ← 0

2. Nodes with the accept state reached in the TM M get ACCEPT .

3. Further, we repeat until no more changes can be made:

(a) if V is ∃ and has a neighbor in ACCEPT then add v.

(b) if V is ∀ and all neighbors in ACCEPT , then add v.

4. M accepts x if start node in GM,x ∈ ACCEPT .

We will continue the discussion on Thursday.

