
CS 6810: Theory of Computing Fall 2023

Lecture 13-15: Oct 3, 5, and 12, 2023

Lecturer: Eshan Chattopadhyay Scribe: Andy He, Ishan Bansal, Stephanie Ma

1 ACO Lower Bounds via the Switching Lemma

Theorem 1.1. If an AC0 circuit C (with size s and depth t) computes PARITY, then S(n) ≥
2Ω(n1/t).

The proof of this theorem will come later, when we discuss the switching lemma. Let us first
introduce the notion of random restrictions on circuits.

Definition 1.2 (Restriction). A restriction R is described by a set S of inputs that are free (or
alive), and an assignment z ∈ {0, 1}S̄ to the bits in S that are fixed.

Definition 1.3 (Random Restriction). Let Rl be the set of all restrictions with exactly l alive bits.
R ∼ Rl (chosen uniformly at random) is called a random restriction.

Definition 1.4 (Restricted Function). Let f be a computable function and R be a random restric-
tion that fixes all bits in some set S. Then f |R : {0, 1}S → {0, 1} is the function obtained by fixing
the bits in S according to the restriction R.

1.1 Decision Trees

Let us define another (non-uniform) model of computation, Decision Trees. A decision tree is a
binary tree where each internal node is labeled by a variable, and each leaf is labeled by 0 or 1.
The tree is traversed by starting at the root, and at each internal node, we query the variable at
that node. If the variable is 0, we go to the left child, otherwise we go to the right child. We output
the label of the leaf we reach.

The depth of the decision tree is the length of the longest path from root to leaf, and the size
is the number of edges.

Suppose DT T computes PARITY on n bits, then the depth of the tree must be at least n,
since we need to query all bits. Further, a tree with depth n can compute any function on n bits,
so the depth of the tree is exactly n.

1.2 Switching Lemma

Recall that a disjunctive normal form (DNF) ϕ is a disjunction (OR) of terms, where each term is
a conjunction (AND) of literals. ϕ is a width w-DNF if no term contains more than w literals.

Theorem 1.5 (H̊astad’s Switching Lemma). Let f be computable by a width w-DNF. For any
p ≤ 1/10, d ∈ N

P
R∼Rpn

[DTdepth(f |R) ≥ d] ≤ (5pw)d

where DTdepth(f |R) is the depth of the shallowest decision tree that computes f |R.

Before proving the above theorem, here is an example application.

1

Lecture 13-15: Oct 3, 5, and 12, 2023 2

Example 1.6. Let p = 1
10w , d = log n, then

P
R∼Rpn

[DTdepth(f |R) ≥ d] ≤ (5pw)d = (5w · 1

10w
)logn = 1/n.

Thus, given a width-w DNF, a random restriction with p = 1/10w will result in the restricted
function f |R to be computable by a decision tree of depth log n with very high probability.

The proof of the switching lemma we shall see is due to Razborov.

Proof. Let f = T1 ∨T2 ∨ . . .∨Tℓ be a DNF where each Ti is AND of at most w literals. Let r = pn
be the number of alive variables, and Rr be the set of restrictions with r alive variables. Define
the subset BAD ⊂ Rr to be all restrictions R ∈ Rr such that DTdepth(f |R) ≥ d. We want to show
that |BAD|/|Rr| ≤ (20pw)d. The proof will be based on a clever encoding argument.

Consider an encoding H from BAD to some set E. Observe that H must be injective for the
encoding to be decodable. Thus, |BAD| ≤ |E|. We will show that E can be taken as Rr−d ×Aux,
where Aux is a set of size (β2w)

d. Observe that |Rr| =
(
n
r

)
2n−r and |Rr−d| =

(
n

n−r+d

)
2n−r+d, so

|Rr−d|
|Rr|

=
r(r − 1)(r − 2) . . . (r − d+ 1)

(n− r + d)(n− r + d− 1) . . . (n− r + 1)
2d ≤

(
2r

n− r + d

)d

= (β1p)
d

Thus, the size of the image of the encoding is at most (β1p)
d · (β2w)d = (β1β2pw)

d, and we can
tune the constants β1 and β2 as required.

We now show that such an encoding exists. We construct a “canonical DT”(CDT) that com-
putes f |R. For any term Ti in the DNF formula of f , if a single bit was set to False, then the
term Ti will evaluate to False. Hence the only terms Ti ‘alive’ after the random restriction R are
those where no bit is set to False and at least one bit is not yet set. Let Ti1 be the first term alive
in f |R, and U1 be the alive variables in Ti1 . Construct a (partial) decision tree that queries (in
lexicographical order) each of the alive variables in U1. There is exactly one path in this decision
tree whose assignments satisfy Ti1 (since every literal in the formula Ti1 must be set to True). Set
the corresponding leaf to evaluate to True (since the formula f will now be satisfied). For every
other leaf, we add in the restriction of the variables in U1 obtained by following the path from the
root to this leaf and we recurse, i.e., we obtain a new restriction R ∪R′ for each leaf respectively
and we look at the first alive term in f |R∪R′ and repeat until no undecided leaf exists. We call the
resulting decision tree the “canonical DT” that computes f |R.

Let R ∈ BAD, and construct a CDT T for R by the above procedure. Let us define σ as the
leftmost path in T of length at least d (and truncated to length d by triming the last few variables
at the end of the path). Such a path must exist since R ∈ BAD, and thus has a CDT of at least
depth d. We want to construct a map R → R ◦ σ. Observe that R ∈ Rs and R ◦ σ ∈ Rs−d, but
we do not have enough information to decode any mapping. Hence, we introduce an auxiliary set
Aux that can provide “hints” to decode. Observe that the mapping to Rs−d × σ trivially decodes
H, but does not restrict the size of Rs.

Let us introduce some notation that will be useful. Observe that the CDT was constructed
recursively in stages i = 1, 2, Let σi denote the path taken in the ith stage of the CDT.
Similarly, let πi be the restriction that corresponds with a satisfying assignment for the first alive
term at stage i.

We can be more clever by letting H map R to R◦π1 and then decoding σ1 from our hint. Given
a mapping in R ◦ π1, we are able to determine which term is T1, since T1 must be the first term
that is satisfied under the restriction R ◦ π1. We can thus encode the indices of alive variables in

Lecture 13-15: Oct 3, 5, and 12, 2023 3

T1 in at most |Ui| logw bits, and the values of the alive variables in |Ui| bits. Thus, the hint to
decode σ1 from R◦π1 is simply v1a1v2a2|, where vi denotes the value of alive variable ai and | is an
arbitrary character that delimits this stage of the decoding. Repeat this process of reconstructing
σ1, σ2, ... from π1, π2, ... by iteratively solving for σi and setting the restriction for the next stage,
i.e., with the hint we can decode σ2 from R ◦ σ1 ◦ π2 · · · .

In summary, let π = π1 ◦ · · · , we can construct a function such that R 7→ (R ◦ π, β), where
R ∈ Rs, R ◦ π ∈ Rs−d, and β = (β1, · · ·) ∈ Aux, βi is the hint for stage i. The function is injective
because we can reconstruct R in the abovementioned procedure. Each βi takes |Ui|(1 + logw)
bits to represent, so β takes (1 + logw)

∑
i |Ui| = (1 + logw)d bits to complete in total. Hence,

|Aux| = 2(1+logw)d.

|Rpn−d ×Aux|
|Rpn|

≤
(

2pn

pn− r + d

)d

× 2(1+logw)d

=

(
4npw

n− pn+ d

)d

≤(
40

9
pw)d ≤ (5pw)d

Therefore, we can conclude

P
R∼Rpn

[DTdepth(f |R) ≥ d] ≤ (5pw)d.

1.3 Application of the Switching Lemma to get AC0 lower bounds

Claim 1.7. Let f be computable by a depth w DT, then f is computable by a width w DNF/CNF.

Proof. Consider a decision tree of depth w, for each path that leads to a 1, write a conjunction
that corresponds to the path, then take the disjunction of all these conjunctions. This is a width
w DNF.

Observe also that ¬f also has a decision tree, we can construct a CNF by taking the negation
of the DNF of the decision tree of ¬f .

We can now prove the theorem stated earlier.

Claim 1.8. If an AC0 circuit C (with size S and depth t) computes PARITY, then S(n) ≥ 2Ω(n1/t).

Proof. Let C be a circuit (size s, depth t) that decides parity which is alternating and has fan-out
1. Note that any circuit can be made into fan-out 1 by introducing duplicate gates with polynomial
overhead on the size. The assumption that the circuit is alternating (has or layers followed by and
layers) can be made without loss of generality. Assume that the bottom layer of gates (layer t− 1)
are all AND gates and the layer above that (layer t − 2) are all OR gates. Thus layer t − 2 is a
series of DNFs.

We can further assume that the bottom layer of gates (layer t − 1) has fan-in of ≤ α logS.
If this is not the case, we can apply a random restriction to the circuit to reduce all large fan-in
circuits in the bottom layer to constants (with high probability) as follows: For each variable i,

Lecture 13-15: Oct 3, 5, and 12, 2023 4

leave it unrestricted with probability q, restrict it to 0 with probability (1− q)/2 and restrict it to
1 with probability (1 − q)/2. Then a bottom gate with fan-in ≥ α logS is unfixed if none of the
variables are set to 0. The probability of this is smaller than (1 − 1−q

2)α logS = 1
poly(S) and so we

can apply a union bound to fix all large fan-in circuits in the bottom layer (with high probability).
Furthermore, the probability that at least nq/k variables survive grows exponentially with k and
so with high probability, a constant factor of the variables still survive.

After all these valid assumptions, layer t − 2 is a series of w-DNFs, where w = α logS. Given
such a circuit C, we will apply a restriction R ∼ Rpn to form circuit C|R. Let p = 1/40w, d = w.
Let ϕi be a DNF in layer t− 2. By the switching lemma, we have that

P
R∼Rpn

[DTdepth(ϕi|R) ≥ d] ≤ (20pw)d =
1

2d
=

1

Sα

From union bound, it follows that the probability a random restriction collapses all circuits Qi

to a DTree of depth less than d is strictly positive. Thus there exists restriction R such that
∀i,DTdepth(ϕi|R) ≤ d. We can thus collapse each of these ϕi to decision trees of depth d, and hence
to a CNF of width d. But now layers t− 2 and t− 3 both comprise of only AND gates and so can
be collapsed into one layer, of width w = d = α logS CNFs. This gives us a new circuit C|R which
has pn alive variables and depth t− 1 and all bottom gates still have fan-in at most α logS.

We can keep applying this same procedure t−2 times to obtain a circuit C|R′ with depth 2 and
at least pt−2n alive variables. This circuit will be a DNF (or a CNF). Then apply one more random
restriction to reduce the final DNF to a decision tree. By the switching lemma, this decision tree
must have depth at most α logS. The depth of this decision tree must be at least the number of
alive variables pt−1n since it computers PARITY on so many bits. Hence,

α logS ≥ pt−1n

=⇒ α logS ≥
(

1

40α logS

)t−1

n

=⇒ (β logS)t ≥ n

=⇒ S ≥ 2Ω(n1/t)

This completes the proof.

	ACO Lower Bounds via the Switching Lemma
	Decision Trees
	Switching Lemma
	Application of the Switching Lemma to get AC0 lower bounds

