Lecture 12: Sep 28, 2023
Lecturer: Eshan Chattopadhyay
Scribe: Yunya Zhao

1 Last class

$\mathbf{A C}^{\mathbf{0}}$ has low degree approximators, more formally, let C be an $\mathbf{A C}^{\mathbf{0}}$ circuit of size s and depth t, then

1. \exists prob. polynomial P of degree $d \leq O\left(\log ^{t}(s / \varepsilon)\right.$ such that $\forall x, \operatorname{Pr}_{p \sim P}[p(x)=C(x)] \geq 1-\varepsilon$
2. $\exists p \in P_{n, d}, d \leq O\left(\log ^{t}(s / \varepsilon)\right)$ such that $\mathbf{P r}_{x}[p(x)=C(x)] \geq 1-\varepsilon$,
where $P_{n, d}$ is family of n-variate polynomials of degree at most d (over \mathbb{F}_{2}).

2 Maj does not have low degree approximator

Theorem 2.1. For any $p \in P_{n, d}$,

$$
\operatorname{Pr}_{x \sim U_{n}}[p(x)=M a j(x)] \leq \frac{1}{2}+O\left(\frac{d}{\sqrt{n}}\right)
$$

This will give us the following:
Theorem 2.2. For any $C \in \mathbf{A C}^{\mathbf{0}}$ of size s and depth d,

$$
\operatorname{Pr}[C(x)=\operatorname{Maj}(x)] \leq \frac{1}{2}+O\left(\frac{\log ^{t}(s / \varepsilon)}{\sqrt{n}}\right)+\varepsilon
$$

Suppose circuit C has size s, depth t. Then by last lecture's theorem, there is a probabilistic polynomial P of degree $O\left(\log ^{t}(s / \varepsilon)\right)$ with error probability $\leq \varepsilon$. This implies that there exists a fixed polynomial p such that $\operatorname{Pr}_{x \sim U_{m}}[p(x)=\operatorname{Maj}(x)] \geq 1-\varepsilon$.

Setting ε to be a small constant $\varepsilon=0.1$, we get $s=2^{\Omega\left(n^{1 / 2 t}\right)}$
Remark 2.3. This not only proves against approximation of Maj with polynomial size $\mathbf{A C}^{\mathbf{0}}$ circuits, but also subexponential size.

Proof of Theorem 2.1. Let p be a polynomial in $P_{n, d}$. Define the following set:

$$
A=\{x: \operatorname{Maj}(x)=p(x)\}
$$

Let $\mathcal{F}_{\mathcal{A}}$ be the family of functions $f: A \rightarrow \mathbb{F}_{2} . \mathcal{F}_{A}$ can be interpretated as a vector space. We make the following observations:

1. $\operatorname{dim}\left(\mathcal{F}_{A}\right)=|A|$, this is because the vector space contains the standard basis.
2. Any $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ can be written as $f(x)=\operatorname{Maj}(x) f_{1}(x)+(1-\operatorname{Maj}(x)) f_{2}(x)$ for some f_{1}, f_{2}.

Claim 2.4. There exists f_{1} and f_{2} with degree no greater than $n / 2$.
Assuming Claim 2.4, any $f \in \mathcal{F}_{A}$ can be computed by a polynomial with degree no more than $n / 2+d$ since for $x \in A, \operatorname{Maj}(x)=p(x)$ where $p \in P_{n, d}$. Therefore,

$$
|A|=\operatorname{dim}\left(\mathcal{F}_{1}\right) \leq \operatorname{dim}\left(P_{n, \frac{n}{2}+d}\right)
$$

Now we show that $\operatorname{dim}\left(P_{n, \frac{n}{2}+d}\right) \leq 2^{n}\left(\frac{1}{2}+\frac{c \cdot d}{\sqrt{n}}\right)$ by observing that monomials of degree $\leq\left(\frac{n}{2}+d\right)$ form a basis and counting the number of such monomials:

$$
\sum_{j=1}^{\frac{n}{2}+d}\binom{n}{j}=\left(2^{n-1}\right)+\sum_{j=\frac{n}{2}+1}^{\frac{n}{2}+d}\binom{n}{j} \leq 2^{n-1} d\binom{n}{n / 2}=2^{n-1}+c d \frac{2^{n}}{\sqrt{n}}
$$

Therefore, for $p \in P_{n, d}$

$$
\operatorname{Pr}_{x \sim U_{n}}[\operatorname{Maj}(x)=p(x)]=\frac{|A|}{2^{n}} \leq \frac{1}{2}+\frac{c \cdot d}{\sqrt{n}}
$$

It remains to prove Claim 2.4. We will prove the following stronger result that will imply Claim 2.4.

Definition 2.5 (Interpolating sets for polynomials). $S \subset \mathbb{F}_{2}^{n}$ is an interpolating set for $P_{n, d}$ if for any $f: S \rightarrow \mathbb{F}_{2}$, \exists unique $p \in P_{n, d}$ such that $\forall x \in S, f(x)=p(x)$

Definition 2.6. $\operatorname{Ball}(x, r)=\left\{y \in\{0,1\}^{n}: \triangle(x, y) \leq r\right\}$
Claim 2.7. $\operatorname{Ball}\left(0^{n}, d\right)$ and $\operatorname{Ball}\left(1^{n}, d\right)$ are both interpolating sets for $P_{n, d}$.
Note that this will give us Claim 2.4 by considering $\operatorname{Ball}\left(0^{n}, n / 2\right)$ which covers all points on which Majority evaluates to 0 , and $\operatorname{Ball}\left(1^{n}, n / 2\right)$ which covers all points on which Majority evaluates to 1.

Proof. The proof for $\operatorname{Ball}\left(0^{n}, d\right)$ and $\operatorname{Ball}\left(1^{n}, d\right)$ are symmetric, here we only show by induction that $\operatorname{Ball}\left(0^{n}, d\right)$ is an interpolating set for $P_{n, d}$.

It's easy to verify the base case holds when $d=0$.
Now assume claim holds for radius from 0 up to $d-1$, i.e. for any $f: \operatorname{Ball}\left(0^{n},<d\right) \rightarrow \mathbb{F}_{2}, p_{<d}$ is the unique polynomial such that $f(x)=p_{<d}(x)$. Then we show

$$
p(x)=\sum_{S \in[n],|S|=d} \alpha_{S} x^{S}+p_{<d}(x)
$$

computes $f: \operatorname{Ball}\left(0^{n}, d\right) \rightarrow \mathbb{F}_{2}$. Let $T=\left\{i:|y|=d, y_{i}=1\right\}$. For y such that $|y|<d, p(y)=p_{<d}(y)$; for y such that $|y|=d, p(y)=\alpha_{T}+p_{<d}(y)$.

