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1 Last class

AC0 has low degree approximators, more formally, let C be an AC0 circuit of size s and depth t,
then

1. ∃ prob. polynomial P of degree d ≤ O(logt(s/ε) such that ∀ x, Prp∼P [p(x) = C(x)] ≥ 1− ε

2. ∃ p ∈ Pn,d, d ≤ O(logt(s/ε)) such that Prx[p(x) = C(x)] ≥ 1− ε,

where Pn,d is family of n-variate polynomials of degree at most d (over F2).

2 Maj does not have low degree approximator

Theorem 2.1. For any p ∈ Pn,d,

Prx∼Un [p(x) = Maj(x)] ≤ 1
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This will give us the following:

Theorem 2.2. For any C ∈ AC0 of size s and depth d,

Pr[C(x) = Maj(x)] ≤ 1
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)
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Suppose circuit C has size s, depth t. Then by last lecture’s theorem, there is a probabilistic
polynomial P of degree O(logt(s/ε)) with error probability ≤ ε. This implies that there exists a
fixed polynomial p such that Prx∼Um [p(x) = Maj(x)] ≥ 1− ε.

Setting ε to be a small constant ε = 0.1, we get s = 2Ω(n1/2t)

Remark 2.3. This not only proves against approximation of Maj with polynomial size AC0 cir-
cuits, but also subexponential size.

Proof of Theorem 2.1. Let p be a polynomial in Pn,d. Define the following set:

A = {x : Maj(x) = p(x)}

Let FA be the family of functions f : A → F2. FA can be interpretated as a vector space. We make
the following observations:

1. dim(FA) = |A|, this is because the vector space contains the standard basis.

2. Any f : Fn
2 → F2 can be written as f(x) = Maj(x)f1(x)+ (1−Maj(x))f2(x) for some f1, f2.
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Claim 2.4. There exists f1 and f2 with degree no greater than n/2.

Assuming Claim 2.4, any f ∈ FA can be computed by a polynomial with degree no more than
n/2 + d since for x ∈ A, Maj(x) = p(x) where p ∈ Pn,d. Therefore,

|A| = dim(F1) ≤ dim(Pn,n
2
+d)

Now we show that dim(Pn,n
2
+d) ≤ 2n(12 + c·d√

n
) by observing that monomials of degree ≤ (n2 + d)

form a basis and counting the number of such monomials:
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Therefore, for p ∈ Pn,d

Pr
x∼Un

[Maj(x) = p(x)] =
|A|
2n

≤ 1
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It remains to prove Claim 2.4. We will prove the following stronger result that will imply Claim
2.4.

Definition 2.5 (Interpolating sets for polynomials). S ⊂ Fn
2 is an interpolating set for Pn,d if for

any f : S → F2, ∃ unique p ∈ Pn,d such that ∀x ∈ S, f(x) = p(x)

Definition 2.6. Ball(x, r) = {y ∈ {0, 1}n : △(x, y) ≤ r}

Claim 2.7. Ball(0n, d) and Ball(1n, d) are both interpolating sets for Pn,d.

Note that this will give us Claim 2.4 by considering Ball(0n, n/2) which covers all points on
which Majority evaluates to 0, andBall(1n, n/2) which covers all points on which Majority evaluates
to 1.

Proof. The proof for Ball(0n, d) and Ball(1n, d) are symmetric, here we only show by induction
that Ball(0n, d) is an interpolating set for Pn,d.

It’s easy to verify the base case holds when d = 0.
Now assume claim holds for radius from 0 up to d− 1, i.e. for any f : Ball(0n, < d) → F2, p<d

is the unique polynomial such that f(x) = p<d(x). Then we show

p(x) =
∑

S∈[n],|S|=d

αSx
S + p<d(x)

computes f : Ball(0n, d) → F2. Let T = {i : |y| = d, yi = 1}. For y such that |y| < d, p(y) = p<d(y);
for y such that |y| = d, p(y) = αT + p<d(y).


	Last class
	Lg does not have low degree approximator

