1 Last class

AC^0 has low degree approximators, more formally, let C be an AC^0 circuit of size s and depth t, then

1. \exists prob. polynomial P of degree $d \leq O(\log^t(s/\varepsilon))$ such that $\forall x, \Pr_{p \sim P}[p(x) = C(x)] \geq 1 - \varepsilon$

2. $\exists p \in P_{n,d}, d \leq O(\log^t(s/\varepsilon))$ such that $\Pr_x[p(x) = C(x)] \geq 1 - \varepsilon$,

where $P_{n,d}$ is family of n-variate polynomials of degree at most d (over \mathbb{F}_2).

2 Maj does not have low degree approximator

Theorem 2.1. For any $p \in P_{n,d}$,

$$\Pr_{x \sim U_n}[p(x) = \text{Maj}(x)] \leq \frac{1}{2} + O\left(\frac{d}{\sqrt{n}}\right)$$

This will give us the following:

Theorem 2.2. For any $C \in \text{AC}^0$ of size s and depth d,

$$\Pr[C(x) = \text{Maj}(x)] \leq \frac{1}{2} + O\left(\frac{\log^t(s/\varepsilon)}{\sqrt{n}}\right) + \varepsilon$$

Suppose circuit C has size s, depth t. Then by last lecture’s theorem, there is a probabilistic polynomial P of degree $O(\log^t(s/\varepsilon))$ with error probability $\leq \varepsilon$. This implies that there exists a fixed polynomial p such that $\Pr_{x \sim U_m}[p(x) = \text{Maj}(x)] \geq 1 - \varepsilon$.

Setting ε to be a small constant $\varepsilon = 0.1$, we get $s = 2^{\Omega(n^{1/2})}$

Remark 2.3. This not only proves against approximation of Maj with polynomial size AC^0 circuits, but also subexponential size.

Proof of Theorem 2.1. Let p be a polynomial in $P_{n,d}$. Define the following set:

$$A = \{x : \text{Maj}(x) = p(x)\}$$

Let \mathcal{F}_A be the family of functions $f : A \rightarrow \mathbb{F}_2$. \mathcal{F}_A can be interpreted as a vector space. We make the following observations:

1. $\dim(\mathcal{F}_A) = |A|$, this is because the vector space contains the standard basis.

2. Any $f : \mathbb{F}_2^n \rightarrow \mathbb{F}_2$ can be written as $f(x) = \text{Maj}(x)f_1(x) + (1 - \text{Maj}(x))f_2(x)$ for some f_1, f_2.
Claim 2.4. There exists f_1 and f_2 with degree no greater than $n/2$.

Assuming Claim 2.4, any $f \in F_A$ can be computed by a polynomial with degree no more than $n/2 + d$ since for $x \in A$, $\text{Maj}(x) = p(x)$ where $p \in P_{n,d}$. Therefore,

$$|A| = \dim(F_1) \leq \dim(P_{n, \frac{n}{2} + d})$$

Now we show that $\dim(P_{n, \frac{n}{2} + d}) \leq 2^n \left(\frac{1}{2} + \frac{cd}{\sqrt{n}}\right)$ by observing that monomials of degree $\leq \frac{n}{2} + d$ form a basis and counting the number of such monomials:

$$\sum_{j=1}^{\frac{n}{2} + d} \binom{n}{j} = (2^n - 1) + \sum_{j=\frac{n}{2} + 1}^{\frac{n}{2} + d} \binom{n}{j} \leq 2^{n-1} d \binom{n}{n/2} = 2^{n-1} + cd \frac{2^n}{\sqrt{n}}$$

Therefore, for $p \in P_{n,d}$

$$\Pr_{x \sim U_n} [\text{Maj}(x) = p(x)] = \frac{|A|}{2^n} \leq \frac{1}{2} + \frac{c \cdot d}{\sqrt{n}}$$

It remains to prove Claim 2.4. We will prove the following stronger result that will imply Claim 2.4.

Definition 2.5 (Interpolating sets for polynomials). $S \subset \mathbb{F}_2^n$ is an interpolating set for $P_{n,d}$ if for any $f : S \to \mathbb{F}_2$, \exists unique $p \in P_{n,d}$ such that $\forall x \in S$, $f(x) = p(x)$

Definition 2.6. $\text{Ball}(x, r) = \{y \in \{0,1\}^n : \Delta(x, y) \leq r\}$

Claim 2.7. $\text{Ball}(0^n, d)$ and $\text{Ball}(1^n, d)$ are both interpolating sets for $P_{n,d}$.

Note that this will give us Claim 2.4 by considering $\text{Ball}(0^n, n/2)$ which covers all points on which Majority evaluates to 0, and $\text{Ball}(1^n, n/2)$ which covers all points on which Majority evaluates to 1.

Proof. The proof for $\text{Ball}(0^n, d)$ and $\text{Ball}(1^n, d)$ are symmetric, here we only show by induction that $\text{Ball}(0^n, d)$ is an interpolating set for $P_{n,d}$.

It’s easy to verify the base case holds when $d = 0$.

Now assume claim holds for radius from 0 up to $d - 1$, i.e. for any $f : \text{Ball}(0^n, < d) \to \mathbb{F}_2$, $p_{<d}$ is the unique polynomial such that $f(x) = p_{<d}(x)$. Then we show

$$p(x) = \sum_{S \in [n], |S| = d} \alpha_S x^S + p_{<d}(x)$$

computes $f : \text{Ball}(0^n, d) \to \mathbb{F}_2$. Let $T = \{i : |y| = d, y_i = 1\}$. For y such that $|y| < d$, $p(y) = p_{<d}(y)$; for y such that $|y| = d$, $p(y) = \alpha_T + p_{<d}(y)$.

\square