Lecture 11: Sep 26, 2023
Lecturer: Eshan Chattopadhyay
Scribe: Sanjit Basker and Owen Oertell

$1 \mathrm{AC}^{0}$ lower bounds

Recall: $A C^{0}$ is the set of languages decidable by a family of constant-depth circuits with unbounded fan-in: the allowed gates are \vee, \wedge, \neg.

Theorem 1.1 (Razborov-Smolensky). MAJORITY $\notin A C^{0}$.
We'll use \mathbb{F}_{2}^{n} and $\{0,1\}^{n}$ interchangeably in this proof. We define the Hamming weight $|x|$ as the number of 1 s in x.

Plan for proof: We will show that there is a weakness in AC^{0} which is not in MAJORITY. Specifically, we shall show low degree approximators exist for all languages computed by $A C^{0}$, but that there are no low-degree approximators for MAJORITY.

Let $P_{n, d}=\left\{n\right.$-variate polynomials over \mathbb{F}_{2}^{n} of degree $\left.\leq d\right\}$. Note that we have $x^{2}=x$ for any $x \in \mathbb{F}_{2}$. So we will be working with multi-linear polynomials, i.e. any occurrence of a variable has degree at most 1. Some examples are $x_{1}+x_{2}+\cdots+x_{n}$ and $x_{1} x_{2}+x_{3} x_{5}$. A non-example is $x_{1} x_{2}^{2}$.

Definition 1.2. Let U_{n} denote the uniform distribution on bitstrings of length n.
Definition 1.3. A function $f:\{0,1\}^{n} \rightarrow\{0,1\} \epsilon$-approximates $g:\{0,1\}^{n} \rightarrow\{0,1\}$ if

$$
\operatorname{Pr}_{x \sim U_{n}}[f(x)=g(x)] \geq 1-\epsilon .
$$

Definition 1.4 (Probabilistic Polynomial). A distribution \mathcal{P} on $P_{n, d}$ is a probabilistic polynomial of degree $\leq d$.

Instead of thinking about a function f that ϵ-approximates g, it is easier to think about the following notion.

Definition 1.5 (Probabilistic pointwise approximation). A probabilistic polynomial \mathcal{P} approximates $g:\{0,1\}^{n} \rightarrow\{0,1\}$ if for all $x \in\{0,1\}^{n}$,

$$
\underset{\mathcal{P}}{\operatorname{Pr}}[\mathcal{P}(x)=g(x)] \geq 1-\epsilon
$$

Claim 1.6. Suppose g has an ϵ probabilistic pointwise approximator \mathcal{P} of degree d. Then $\exists f \in P_{n, d}$ that ϵ-approximates g.

Proof. By definition, we know that

$$
\underset{p \sim \mathcal{P}}{\mathbb{E}}\left[1_{P(x)=g(x)}\right] \geq 1-\epsilon
$$

for all $x \in\{0,1\}^{n}$. Thus,

$$
\underset{x \sim \mathcal{U}_{n}}{\mathbb{E}} \underset{p \sim \mathcal{P}}{\mathbb{E}}\left[1_{P(x)=g(x)}\right] \geq 1-\epsilon
$$

We can switch the expectation,

$$
\underset{p \sim \mathcal{P}}{\mathbb{E}} \underset{x \sim \mathcal{U}_{n}}{\mathbb{E}}\left[1_{P(x)=g(x)}\right] \geq 1-\epsilon
$$

Then, we know that $\exists p \in \operatorname{supp}(\mathcal{P})$ such that $\operatorname{Pr}_{x}[p(x)=g(x)] \geq 1-\epsilon$.

Fact 1.7. Any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be completely approximated by $p \in P_{n, n}$.
You can prove this, for example, by doing casework on the $f_{0}\left(x^{\prime}\right)=f\left(x^{\prime} \mid 0\right)$ and $f_{1}\left(x^{\prime}\right)=f\left(x^{\prime} \mid 1\right)$, or by using polynomial interpolation.

1.1 Probabilistic Polynomials for $A C^{0}$

We'll start with approximating AND and OR gates. Note that the output of a NOT gate can be trivially approximated by subtracting the polynomial that approximates its argument from 1.

We can naïvely approximate the AND gate by:

$$
\wedge\left(x_{1}, \ldots, x_{n}\right) \Rightarrow P_{\wedge, \text { nä̈ve }}\left(x_{1}, \ldots, x_{n}\right)=\prod x_{i}
$$

Although this is a complete approximation, it is quite high degree. So let's try to find a better one.

For $S \subseteq[n]$, define $P_{\wedge, S}=1-\sum_{i \in S}\left(1-x_{i}\right)$. Sample S according to the following: for each $i \in[n]$, place i in S independently and with probability $\frac{1}{2}$. This then gives a distribution \mathcal{P} over polynomials.

We care the most about: $x=1^{n}$, we get that $P_{\wedge, S}(x)=1-\sum_{i \in S} 0=1=\wedge(x)$. On the other hand, in the case that $x \neq 1^{n}$, then we want to find the probability that

$$
\operatorname{Pr}\left[P_{\wedge, S}(x)=\wedge(x)\right]=\operatorname{Pr}\left[P_{\wedge, S}(x)=0\right]
$$

Pick an i such that $x_{i}=0$. Now, sample S by deciding on the fate of x_{i} last, i.e. $S=T \cup X$ where T is a fixed subset of $[n] \backslash\{i\}$, and X is either $\left\}\right.$ or $\{i\}$, with probability $\frac{1}{2}$. Since $x_{i}=0$, we know that $1-x_{i}=1$, so

$$
\begin{aligned}
P_{\wedge, S}(x) & =1-\sum_{j \in S}\left(1-x_{j}\right) \\
& = \begin{cases}1-\sum_{j \in T}\left(1-x_{j}\right)-1, & \text { with probability } \frac{1}{2} \\
1-\sum_{j \in T}\left(1-x_{j}\right), & \text { with probability } \frac{1}{2}\end{cases}
\end{aligned}
$$

The branches in the last expression are equal to 0 and 1 in some order, so this shows that for all $x \neq 1^{n}, \operatorname{Pr}_{p \sim \mathcal{P}}[p(x)=\wedge(x)]=\frac{1}{2}$

However, this polynomial isn't a satisfactory approxomation because it only detects the no-cases with probabililty $\frac{1}{2}$. We can "boost" its accuracy by taking k such polynomials and multiplying them together, à la naïve AND:

$$
P_{\wedge}^{k}=\prod P_{\wedge, S_{i}}=P_{\wedge, n}\left(P_{n, s_{1}}, \ldots P_{n, s_{k}}\right)
$$

This gives us a better approximator with accuracy 1 when $x=1^{n}$ and accuracy $1-\left(\frac{1}{2}\right)^{k}$ when $n \neq 1^{n}$.

Taking $k=\log (1 / \epsilon)$ gives a low-degree ϵ-approximator for AND.

The approximator for OR with similar properties can be found by composing De Morgan's Law with this entire construction.

Let's try to compose these approximators inductively: suppose that our circuit C is an OR of ℓ inputs, which can be approximated by the polynomials $P_{c_{i}}$ for $i=1, \ldots, \ell$. We apply the k-approximator for OR to these polynomials to get the approximator $P_{C}=P_{\vee}^{k}\left(P_{c_{1}}, \ldots, P_{c_{\ell}}\right)$. We know that $\operatorname{deg} P_{C}=k \cdot \max \left(\operatorname{deg} P_{c_{i}}\right)$.

We'll use the union bound to evaluate the correctness of the new circuit: the bad events are any of the $\ell+1$ polynomials (the inputs and the polynomial that evaluates the OR) being wrong, and each bad event occurs with probability ϵ^{\prime}. So the final probability of being wrong is at most $(\ell+1) \epsilon^{\prime}$.

Every time that we reduce the depth of this circuit, we know that we reduce the degree of our polynomial by d. Therefore, the degree of probabilistic polynomial approximating a circuit of t layers has degree k^{t}. We can use a similar argument on the correctness. In general, we have that for a circuit of size s and depth t, there exists a probabilistic polynomial of degree is $\log ^{t}\left(\frac{1}{\epsilon}\right)$ and with error probability $s \cdot \epsilon$.

Coalescing this all,
Theorem 1.8. For any circuit $C \in A C^{0}$, with size s and depth t. There is $a \log ^{t}(s / \epsilon)$ degree ϵ-probabilistic polynomial approximator.

