
CS 6810: Theory of Computing Fall 2023

Lecture 10: August 21, 2023

Lecturer: Eshan Chattopadhyay Scribe: Esther Wang

1 Circuit Upper Bounds

Theorem 1.1. Any function f : {0, 1}n −→ {0, 1} can be computed by a 2n

cn sized circuit for some
constant c.

Last lecture we saw that such a function can be computed with a cn2n sized circuit simply by
determining the truth table for f , and writing out the corresponding CNF or DNF. We show that
we can improve this bound to 2n

cn .

We begin by observing that for some f(x1, x2, ...xn), xn can either be 0 or 1. We define 2 new
functions, f0, f1 such that

f0(x1, ...xn−1) = f(x1, ...xn−1, 0)

and similarly
f1(x1, ...xn−1) = f(x1, ...xn−1, 1)

Then, it holds that
f = (f0 ∧ xn) ∨ (f1 ∧ xn)

That is, subcircuits for f0, f1 can be combined as follows into a circuit for f :

We note that this requires 6 new wires. This gives us the following recurrence for circuit size:

T (n) = 2T (n− 1) +O(1) = C ∗ 2n

knowing that T (1) = O(1). Then, we can determine that recursively constructing subcircuits in
this manner allows us to construct a circuit for a function with n inputs using c ∗ 2n wires.

This bound is clearly not good enough yet. We make the following observation: we can use
this recursive construction of smaller subcircuits, up until a certain depth level k, and brute force
compute all functions for any smaller inputs. The following graphic illustrates the general idea:

1

Lecture 10: August 21, 2023 2

That is, we recursively set the last variable for n−k levels of the recursive tree, using the construc-
tion described above. There are 2n−k subfunctions at this point. There are still k unset variables.
We define the following:

Fk = family of all functions {0, 1}k −→ {0, 1}

We know that |Fk| = 22
k
, and that each g ∈ Fk has a c1 ∗ 2k sized circuit. Therefore, we can

construct a big circuit for the entire family Fk using c1 ∗ 22
k ∗ 2k wires.

Now consider the functions at depth n− k. There are 2n−k such functions. Each needs to make 2
queries to the circuit computing Fk. Therefore, the total number of wires required consists of the
wires required for the circuit computing Fk, the wires at the interface level, and the unrolling of
n− k variables. That is,

c1 ∗ 22
k ∗ 2k + 2 ∗ 2n−k + c2 ∗ 2n−k = c1 ∗ 22

k ∗ 2k + c3 ∗ 2n−k

for some constants c1, c2, c3.

Now, let k = log(n)− 1. Then,

c1 ∗ 22
k ∗ 2k + c3 ∗ 2n−k = c1 ∗ 22

log(n)−1 ∗ 2log(n)−1 + c3 ∗ 2n−log(n)−1

=
2n

cn

Theorem 1.2. P ⊆ P/poly

Let L ∈ P . Then, there exists some TM M computing L in time nc. We assume a uniform
number of steps N ∈ O(nc) on any input of a given length. There are overheads which achieve
this, such as a quadratic overhead to make an arbitrary TM oblivious. Therefore, on some input
of length x, we can represent configuration states in P ∈ O(nc) bits (tape head locations, tape cell
contents - the number of which is bounded by the time M takes in computation, state of M).

Lecture 10: August 21, 2023 3

Now, we observe that the configuration in step i can be computed from the configuration in step
i − 1 with a poly-sized (on P) circuit representing the transition function of M . Therefore, our
circuit consists of the following:

We add in poly-sized circuits that just generate initial configuration, and check if the Nth state is
an accepting state. Since each circuit is poly-sized, and there are polynomially many such circuits,
this is a poly-sized circuit computing L.

2 Turing Machines With Advice

Definition 2.1. L ∈ DTIME(T (n))/a(n) if there exists a TM M that runs in O(T (n)) time and
some {αn}n∈N, αn ∈ {0, 1}a(n) such that x ∈ L ⇐⇒ M(x, α|x|) = 1.

Theorem 2.2. P/poly =
⋃

c1,c2∈N DTIME(n
c1)/nc2.

Suppose L has a poly-sized circuit family C computing it. We let our “advice” sequence simply
be our circuits; that is, {αi = Ci} where Ci is the circuit in C for inputs of size i. We construct
turing machine M such that on input x,Cn, if |x| = n, it simulates Cn on x and returns the result.
This is possible because by definition Cn must be polysized.

In the other direction, suppose we have some polytime TM M which computes L with polysized
advice. From Theorem 1.2 we know we can construct a polysized circuit for M without the advice.
However, since the advice is poly-sized, for every αi advice for inputs of size i, we construct a
separate (fixed) circuit for the advice, taking only inputs of 0,1. This circuit will also be polysized

Lecture 10: August 21, 2023 4

by virtue of the fact that αi must be polynomial in length. We attach each of these to our circuit
for M , to create our poly-sized circuit family.

3 Circuit Lower Bounds

In the next few lectures we will study the circuit class AC0 (defined below) and prove strong
lower bounds against this class. While AC0 is itself an interesting class, some of the motivation
for studying lower bounds for this class stems from the interesting technical tools that have been
developed over several decades to prove such lower bounds.

Definition 3.1. AC0 is the class of constant-depth polynomial-sized circuits with unbounded fan-in,
consisting of AND, OR and NOT gates.

Over the next couple of lectures we will prove the following.

Theorem 3.2. MAJORITY ̸∈ AC0

Theorem 3.3. PARITY ̸∈ AC0

On a high level, the proof approaches are based on finding weaknesses of AC0 circuits that are
not exhibited by PARITY or MAJORITY. We will make this concrete in upcoming lectures - in
particular, we will see two very different approaches for proving lower bounds against AC0.

The first approach is based on showing that circuits in AC0 can be approximated by low-degree
polynomials. In contrast, the second approach will be based on showing that AC0 circuits ‘simplify’
when a random subset of coordinates are set to uniformly random values. We leave more details
to future lectures.

	Circuit Upper Bounds
	Turing Machines With Advice
	Circuit Lower Bounds

